Abdellatef, M. A., Elagamey, E. and Kamel, S. M. (2022). Chitosan is the ideal resource for plant disease management under sustainable agriculture. In Chitin and Chitosan-Isolation, Properties and Applications. IntechOpen, pp. 1-35.
Aktar, W., Sengupta, D. and Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2: 1-12.
Badawy, M. E. and Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. 2011: doi:10.1155/2011/460381.
Bhatt, S., Pathak, R., Punetha, V. D. and Punetha, M. (2024). Chitosan nanocomposites as a nano-bio tool in phytopathogen control. Carbohydrate Polymers 331: doi:10.1016/j. carbpol.2024.121858.
Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I. and Moretto, A. (2008). Cumulative risk assessment of pesticide residues in food. Toxicol. Lett. 180: 137-50.
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M. and Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agric. 10: doi:10.3390/agriculture10120624.
Charoenvuttitham, P., John, S. and Gauri Mittal, S. (2006). Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep. Sci. Technol. 41: 1135-53.
Chirkov, S. N. (2002). The antiviral activity of chitosan. Appl. Biochem. Microb. 38: 1-8.
Crini, G., Badot, P. M., Roberts, G. A. and Guibal, E. (2009). Chitin and chitosan: from biopolymer to application. Presses Universitaires: Franche-Comté, France. pp. 27-28.
Divya, K., Vijayan, S., George, T. K. and Jisha, M. S. (2017). Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym. 18: 221-30.
Fukamizo, T., Ohkawa, T., Ikeda, Y. and Goto, S. (1994). Specificity of chitosanase from Bacillus pumilus. Biochim. Biophys. Acta, (BBA)-Protein Struct. Mol. Enzymol. 1205: 183-88.
Hosseinnejad, M. and Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 85: 467-75.
Khairy, A. M., Tohamy, M. R., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M., El-Saadony, M. T. and Mesiha, P. K. (2022). Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J. Biol. Sci. 29: doi:10.1016/j.sjbs.2021.11.041.
Khan, T. A., Peh, K. K. and Ch’ng, H. S. (2002). Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J. Pharm. Pharm. Sci. 5: 205-12.
Kurita, K., Tomita, K., Tada, T., Ishii, S., Nishimura, S. I. and Shimoda, K. (1993). Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic. J. Polym. Sci. Part Polym. Chem. 31: 485–91.
Lenteren, J. V. (2003). Need for quality control of mass-produced biological control agents. In Quality control and production of biological control agents: theory and testing procedures, Wallingford UK: CABI Publishing. pp. 1-18.
Ma, Z., Garrido-Maestu, A. and Jeong, K. C. (2017). Application, mode of action and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 176: 257-65.
Malerba, M. and Cerana, R. (2016). Chitosan effects on plant systems. Int. J. Mol. Sci. 17: doi:10.3390/ijms17070996.
Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E. and Fernandes, J. C. (2004). Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57: 1-8.
Muzzarelli, R. A. A. (1997). Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci. 53: 131-40.
Qin, Z. and Zhao, L. (2019). The history of chito/chitin oligosaccharides and its monomer. Oligosaccharides of Chitin and Chitosan: bio-manufacture and applications, Springer: Singapore. pp. 3-14.
Riseh, R. S., Vazvani, M. G., Vatankhah, M. and Kennedy, J. F. (2024). Chitin-induced disease resistance in plants: A review. Int. J. Biol. Macromol. 266: doi:10.1016/j.ijbiomac.2024.131105.
Rout, S. (2001). Physicochemical, Functional and Spectroscopic Analysis of Crawfish Chitin and Chitosan as Affected by Process Modification. LSU Historical Dissertations and Theses. pp. 432. doi:10.31390/gradschool_disstheses.432.
Sabnis, S. and Block, L. H. (1997). Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polym. Bull. 39: 67-71.
Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T. and Adeyemi, O. S. (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 7: doi:10.1016/j.heliyon.2021.e06456.
Tinivella, F., Hirata, L. M., Celan, M. A., Wright, S. A., Amein, T., Schmitt, A., Koch, E., Wolf, J., Groot, S., Stephan, D., Garibaldi, A. and Gullino, M. L. (2009). Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments. Eur. J. Plant Pathol. 123: 139-51. doi:10.1007/s10658-008-9349-3.
Tolaimate, A., Desbrieres, J., Rhazi, M. and Alagui, A. (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polym. 44: 7939-52.
Truong, T. O., Hausler, R., Monette, F. and Niquette, P. (2007). Valorisation des résidus industriels de pêches pour la transformation de chitosane par technique hydrothermo-chimique. Revue. Des. Sci. de l'eau. 20: 253-62.
Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X. and Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Mol. 26: doi:10.3390/ molecules26237136.
Aktar, W., Sengupta, D. and Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2: 1-12.
Badawy, M. E. and Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. 2011: doi:10.1155/2011/460381.
Bhatt, S., Pathak, R., Punetha, V. D. and Punetha, M. (2024). Chitosan nanocomposites as a nano-bio tool in phytopathogen control. Carbohydrate Polymers 331: doi:10.1016/j. carbpol.2024.121858.
Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I. and Moretto, A. (2008). Cumulative risk assessment of pesticide residues in food. Toxicol. Lett. 180: 137-50.
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M. and Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agric. 10: doi:10.3390/agriculture10120624.
Charoenvuttitham, P., John, S. and Gauri Mittal, S. (2006). Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep. Sci. Technol. 41: 1135-53.
Chirkov, S. N. (2002). The antiviral activity of chitosan. Appl. Biochem. Microb. 38: 1-8.
Crini, G., Badot, P. M., Roberts, G. A. and Guibal, E. (2009). Chitin and chitosan: from biopolymer to application. Presses Universitaires: Franche-Comté, France. pp. 27-28.
Divya, K., Vijayan, S., George, T. K. and Jisha, M. S. (2017). Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym. 18: 221-30.
Fukamizo, T., Ohkawa, T., Ikeda, Y. and Goto, S. (1994). Specificity of chitosanase from Bacillus pumilus. Biochim. Biophys. Acta, (BBA)-Protein Struct. Mol. Enzymol. 1205: 183-88.
Hosseinnejad, M. and Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 85: 467-75.
Khairy, A. M., Tohamy, M. R., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M., El-Saadony, M. T. and Mesiha, P. K. (2022). Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J. Biol. Sci. 29: doi:10.1016/j.sjbs.2021.11.041.
Khan, T. A., Peh, K. K. and Ch’ng, H. S. (2002). Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J. Pharm. Pharm. Sci. 5: 205-12.
Kurita, K., Tomita, K., Tada, T., Ishii, S., Nishimura, S. I. and Shimoda, K. (1993). Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic. J. Polym. Sci. Part Polym. Chem. 31: 485–91.
Lenteren, J. V. (2003). Need for quality control of mass-produced biological control agents. In Quality control and production of biological control agents: theory and testing procedures, Wallingford UK: CABI Publishing. pp. 1-18.
Ma, Z., Garrido-Maestu, A. and Jeong, K. C. (2017). Application, mode of action and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 176: 257-65.
Malerba, M. and Cerana, R. (2016). Chitosan effects on plant systems. Int. J. Mol. Sci. 17: doi:10.3390/ijms17070996.
Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E. and Fernandes, J. C. (2004). Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57: 1-8.
Muzzarelli, R. A. A. (1997). Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci. 53: 131-40.
Qin, Z. and Zhao, L. (2019). The history of chito/chitin oligosaccharides and its monomer. Oligosaccharides of Chitin and Chitosan: bio-manufacture and applications, Springer: Singapore. pp. 3-14.
Riseh, R. S., Vazvani, M. G., Vatankhah, M. and Kennedy, J. F. (2024). Chitin-induced disease resistance in plants: A review. Int. J. Biol. Macromol. 266: doi:10.1016/j.ijbiomac.2024.131105.
Rout, S. (2001). Physicochemical, Functional and Spectroscopic Analysis of Crawfish Chitin and Chitosan as Affected by Process Modification. LSU Historical Dissertations and Theses. pp. 432. doi:10.31390/gradschool_disstheses.432.
Sabnis, S. and Block, L. H. (1997). Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polym. Bull. 39: 67-71.
Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T. and Adeyemi, O. S. (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 7: doi:10.1016/j.heliyon.2021.e06456.
Tinivella, F., Hirata, L. M., Celan, M. A., Wright, S. A., Amein, T., Schmitt, A., Koch, E., Wolf, J., Groot, S., Stephan, D., Garibaldi, A. and Gullino, M. L. (2009). Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments. Eur. J. Plant Pathol. 123: 139-51. doi:10.1007/s10658-008-9349-3.
Tolaimate, A., Desbrieres, J., Rhazi, M. and Alagui, A. (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polym. 44: 7939-52.
Truong, T. O., Hausler, R., Monette, F. and Niquette, P. (2007). Valorisation des résidus industriels de pêches pour la transformation de chitosane par technique hydrothermo-chimique. Revue. Des. Sci. de l'eau. 20: 253-62.
Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X. and Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Mol. 26: doi:10.3390/ molecules26237136.