Loading...

Chitosan applications in plant disease control: A mini review

DOI: 10.31830/2456-8724.2024.FM-152    | Article Id: FM-152 | Page : 92-101
Citation :- Chitosan applications in plant disease control: A mini review. Farm. Manage. 9: 92-101
RUSHI P. PANDYA, I. B. KAPADIYA, M. L. PATEL AND V. C. GADHIYA ibkapadiya@jau.in
Address : Wheat Research Station, Junagadh Agricultural University, Junagadh-362 001, Gujarat, India
Submitted Date : 24-10-2024
Accepted Date : 27-10-2024

Abstract

 Agriculture is the future. However, for increasing production of food grain, farmers are using pesticides discriminate, which is harmful to environment as well as human and animal’s health. So, in favors of a sustainable agriculture, many plant protection products currently in use, will be replaced with lower environmental impact substances. Chitosan-based molecules are largely used as safe and environmental-friendly tools to ameliorate crop productivity and conservation of agronomic commodities. Thus, chitosan compounds are strongly recommended to be used in the management strategies against phytopathogens such as viruses, bacteria and fungi. Chitosan has high antifungal, antibacterial, antiviral and antinematode activity.

Keywords

Antibacterial antifungal antinematode antiviral chitosan 

References

Abdellatef, M. A., Elagamey, E. and Kamel, S. M. (2022). Chitosan is the ideal resource for plant disease management under sustainable agriculture. In Chitin and Chitosan-Isolation, Properties and Applications. IntechOpen, pp. 1-35.
Aktar, W., Sengupta, D. and Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2: 1-12.
Badawy, M. E. and Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. 2011: doi:10.1155/2011/460381.
Bhatt, S., Pathak, R., Punetha, V. D. and Punetha, M. (2024). Chitosan nanocomposites as a nano-bio tool in phytopathogen control. Carbohydrate Polymers 331:  doi:10.1016/j. carbpol.2024.121858.
Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I. and Moretto, A.  (2008). Cumulative risk assessment of pesticide residues in food. Toxicol. Lett. 180: 137-50.
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M. and Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agric. 10: doi:10.3390/agriculture10120624.
Charoenvuttitham, P., John, S. and Gauri Mittal, S. (2006). Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep. Sci. Technol. 41: 1135-53.
Chirkov, S. N. (2002). The antiviral activity of chitosan. Appl. Biochem. Microb. 38:   1-8.
Crini, G., Badot, P. M., Roberts, G. A. and Guibal, E. (2009). Chitin and chitosan: from biopolymer to application. Presses Universitaires: Franche-Comté, France. pp. 27-28.
Divya, K., Vijayan, S., George, T. K. and Jisha, M. S. (2017). Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym. 18: 221-30.
Fukamizo, T., Ohkawa, T., Ikeda, Y. and Goto, S. (1994). Specificity of chitosanase from Bacillus pumilus. Biochim. Biophys. Acta, (BBA)-Protein Struct. Mol. Enzymol. 1205: 183-88.
Hosseinnejad, M. and Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 85: 467-75.
Khairy, A. M., Tohamy, M. R., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M., El-Saadony, M. T. and Mesiha, P. K. (2022). Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J. Biol. Sci. 29: doi:10.1016/j.sjbs.2021.11.041.
Khan, T. A., Peh, K. K. and Ch’ng, H. S. (2002). Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J. Pharm. Pharm. Sci. 5: 205-12.
Kurita, K., Tomita, K., Tada, T., Ishii, S., Nishimura, S. I. and Shimoda, K. (1993). Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic. J. Polym. Sci. Part Polym. Chem. 31: 485–91.
Lenteren, J. V. (2003). Need for quality control of mass-produced biological control agents. In Quality control and production of biological control agents: theory and testing procedures, Wallingford UK: CABI Publishing. pp. 1-18.
Ma, Z., Garrido-Maestu, A. and Jeong, K. C. (2017). Application, mode of action and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 176: 257-65.
Malerba, M. and Cerana, R. (2016). Chitosan effects on plant systems. Int. J. Mol. Sci. 17:  doi:10.3390/ijms17070996.
Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E. and Fernandes, J. C. (2004). Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57: 1-8.
Muzzarelli, R. A. A. (1997). Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci. 53: 131-40.
Qin, Z. and Zhao, L. (2019). The history of chito/chitin oligosaccharides and its monomer. Oligosaccharides of Chitin and Chitosan: bio-manufacture and applications, Springer: Singapore. pp. 3-14.
Riseh, R. S., Vazvani, M. G., Vatankhah, M. and Kennedy, J. F. (2024). Chitin-induced disease resistance in plants: A review. Int. J. Biol. Macromol. 266:  doi:10.1016/j.ijbiomac.2024.131105.
Rout, S. (2001). Physicochemical, Functional and Spectroscopic Analysis of Crawfish Chitin and Chitosan as Affected by Process Modification. LSU Historical Dissertations and Theses. pp. 432. doi:10.31390/gradschool_disstheses.432.
Sabnis, S. and Block, L. H. (1997). Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polym. Bull. 39: 67-71.
Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T. and Adeyemi, O. S. (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 7: doi:10.1016/j.heliyon.2021.e06456.
Tinivella, F., Hirata, L. M., Celan, M. A., Wright, S. A., Amein, T., Schmitt, A., Koch, E., Wolf, J., Groot, S., Stephan, D., Garibaldi, A. and Gullino, M. L. (2009). Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments. Eur. J. Plant Pathol. 123: 139-51. doi:10.1007/s10658-008-9349-3.
Tolaimate, A., Desbrieres, J., Rhazi, M. and Alagui, A. (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polym. 44: 7939-52.
Truong, T. O., Hausler, R., Monette, F. and Niquette, P. (2007). Valorisation des résidus industriels de pêches pour la transformation de chitosane par technique hydrothermo-chimique. Revue. Des. Sci. de l'eau. 20: 253-62.
Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X. and Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Mol. 26:  doi:10.3390/ molecules26237136.

Global Footprints