Loading...

Navigating sugarcane's growth matrix for yield maximization through Ethrel and GA3: Beyond traditions

DOI: 10.31830/2456-8724.2024.FM-149    | Article Id: FM-149 | Page : 77-91
Citation :- Navigating sugarcane's growth matrix for yield maximization through Ethrel and GA3: Beyond traditions. Farm. Manage. 9: 77-91
ANAM, KUSUM YADAV, T. K. SHRIVASTAVA, PUSHPA SINGH AND R. K. SINGH parampushpa@gmail.com
Address : ICAR- Indian Institute of Sugarcane Research, Lucknow-226002, Uttar Pradesh, India
Submitted Date : 13-09-2024
Accepted Date : 6-10-2024

Abstract

Sugarcane crop growth matrix is restricted by high temperature and limited growth period. This causes considerable reduction in crop and sucrose yields. Temporal invigoration of growth during the crop cycle for yield maximization is therefore need of the hour in Indian sub tropics. This study hypothesises that foliar applications of growth regulators, specifically Ethrel and gibberellic acid (GA3), can effectively address common constraints in sugarcane cultivation, such as poor germination, low tillering, and suboptimal ratoon yields. The study employed a comprehensive approach to evaluate the effects of Ethrel and GA3 on sugarcane growth and yield.  It dealt with higher shoot population, increased leaf area index and stalk elongation during the growth period, both induced through Ethrel soaking and Gibberellic acid applications, and were positively associated with increased dry matter and sucrose contents. Field trials (2021-2023) were conducted to measure their influence on cane growth, sucrose accumulation, and overall yield. Foliar application of growth hormones has mitigated constraints in sugarcane cultivation by influencing biological processes, gene expression, and yield components. Ethrel and Gibberellin (GA3) are significant players in sugarcane agriculture, impacting cane. This current article reviews the roles of these chemicals in regulating sugarcane growth and development and provides insights into fundamental mechanisms and practical implications. By examining the effects of Ethrel and GA3 on overcoming limitations and enhancing obtainable yield potential (OYP) against theoretical yield potential (TYP), this article contributes to a deeper understanding of plant growth regulators utilization in sugarcane cultivation.

Keywords

Biomass germination growth matrix internodal elongation shoot numbers stalk length sugarcane

References

Ajmi, A., Larbi, A., Morales, M., Fenollosa, E., Charri, A. and Munne-Bosch, S. (2020). Foliar paclobutrazol application suppresses olive tree growth while promoting fruit set. J. Plant Growth Regul. 39: 1638-46. doi:10.1007/s00344-020-10188-z.
Bagale, P., Pandey, S., Regmi, P. and Bhusal, S. (2022). Role of plant growth regulator “Gibberellins” in vegetable production: An overview. Int. J. Hortic. Sci. Technol. 9: 291-99. doi:10.22059/ijhst.2021.329114.495.
Bordonal, R. D., Carvalho, J. L., Lal, R., Eduardo, Barretto de Figueiredo., Bruna, Gonçalves de Oliveira. and Newton, La Scala Jr. (2018). Sustainability of sugarcane production in Brazil: A review. Agron. Sustain. Dev. 38: 1-23. doi:10.1007/s13593-018-0490-x.    
Claeys, H., De Bodt, S. and Inzé, D. (2014). Gibberellins and DELLAs: Central nodes in growth regulatory networks. Trends Plant Sci. 19: 231-39. doi:10.1016/j.tplants.2013.10.001.
Davière, J. M. and Achard, P. (2013). Gibberellin signalling in plants. Development 140: 1147-51. doi:10.1242/dev.087650.
Dayan, J. (2016). Gibberellin transport. In Annual Plant Reviews. Gibberellins. 49: 95-120. doi:10.1002/9781119210436.ch4.
Falcioni, R., Moriwaki, T. and Bonato, C. M. (2017). Distinct growth light and gibberellin regimes alter leaf anatomy and reveal their influence on leaf optical properties. Environ. Exp. Bot. 140: 86-95.  doi:10.1016/j.envexpbot.2017.06.001.
FAOSTAT (2023). Sugarcane. FAO. http://www.fao.org/land-water/databases-and-software/ crop-information/sugarcane/en/. Accessed October 10, 2023. 
Guleria, S., Kumar, M., Khan, A. and Kaushik, R. (2021). Plant hormones: Physiological role and health effects. J. Microbiol. Biotechnol. Food Sci. 11: doi:10.15414/jmbfs.1147.
Hedden, P. and Thomas, S. G. (2012). Gibberellin biosynthesis and its regulation. Biochem. J. 444: 11-25. doi:10.1042/BJ20120245.
Hou, X., Ding, L. and Yu, H. (2013). Crosstalk between GA and JA signalling mediates plant growth and defense. Plant Cell Rep. 32: 1067-74. doi:10.1007/s00299-013-1423-4.
López-Salmerón, V., Cho, H., Tonn, N. and Greb, T. (2019). The phloem as a mediator of plant growth plasticity. Curr. Biol. 29: doi:10.1016/j.cub.2019.01.015.
Madala, H. V., Lesmes-Vesga, R. A., Odero, C. D., Sharma, L. K. and Sandhu, H. S. (2023). Effects of planting pre-germinated buds on stand establishment in sugarcane. Agronomy 13: doi:10.3390/agronomy13041001.
Martínez, C., Espinosa‐Ruiz, A. and Prat, S. (2016). Gibberellins and plant vegetative growth. In Annu. Plant Rev. Vol. 49, John Wiley & Sons Ltd. pp. 285-322. doi:10.1002/9781119210436.ch10.
Moore, P. H. and Maretzki, A. (2014). Sugarcane. In: Photo assimilate distribution in plants and crops: Source - Sink Relationships. pp. 643-70. Routledge. doi:10.1201/9780203743539-27.
Nguyen, T., Moore, P. H., DiBella, E., Maretzki, A., Ginoza, H. and Yamada, N. (2019). Gibberellin increases sucrose accumulation in sugarcane stalks. Plant Physiol. Biochem. 141: 90-98. doi:10.1016/j.plaphy.2019.05.010.
Park, J., Lee, Y., Martinoia, E. and Geisler, M. (2017). Plant hormone transporters: What we know and what we would like to know? BMC Biol. 15: 1-5. doi:10.1186/s12915-017-0443-x.
Rademacher, W. (2016). Chemical regulators of gibberellin status and their application in plant production. Annu. Plant Rev. 15: 359-404.  doi:10.1002/9781119210436.ch12.
Rai, R. K., Singh, P., Solomon, S. and Shrivastava, A. K. (2014). Augmenting sugar productivity: Physio-biochemical Interventions. ICAR-IISR, Lucknow. ISBN: 978-93-5493-858-0. 
Rai, R. K., Tripathi, N., Gautam, D. and Singh, P. (2017). Exogenous application of Ethrel and gibberellic acid stimulates physiological growth of late planted sugarcane with short growth period in sub-tropical India. J. Plant Growth Regul. 36: 472-86. doi:10.1007/s00344-016-9655-5.
Ritonga, F. N., Zhou, D., Zhang, Y., Song, R., Li, C.,  Li, J. and Gao, J. (2023). The roles of gibberellins in regulating leaf development. Plants 12: doi:10.3390/plants12061243.
Salazar-Cerezo, S., Martínez-Montiel, N., García-Sánchez, J., Pérez-y-Terrón, R. and Martínez-Contreras, R. D. (2018). Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi, and bacteria. Microbiol. Res. 208: 85-98. doi:10.1016/j.micres. 2018.01.010.
Silva, R. G., Alves, R. D. and Zingaretti, S. M. (2020). Increased [CO2] causes changes in physiological and genetic responses in C4 crops: A brief review. Plants 9: doi:10.3390/ plants9111567.
Som-Ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F. and Immitzer, M. (2021). Remote sensing applications in sugarcane cultivation: A review. Remote Sens.13:  doi:10.3390/rs13204040.
Waclawovsky, A. J., Sato, P. M., Lembke, C. G., Moore, P. H. and Souza, G. M. (2010). Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnol. J. 8: 263-76. doi:10.1111/j.1467-7652.2009.00491.x.
Wallner, E. S., López-Salmerón, V. and Greb, T. (2016). Strigolactone versus gibberellin signalling: Reemerging concepts? Planta 243: 1339-50. doi:10.1007/s00425-016-2478-6.



Global Footprints