Loading...

Efficient crop residue management under conservation agriculture for improving soil quality: A review 


DOI: 10.31830/2456-8724.2023.FM-129    | Article Id: FM-129 | Page : 59-71
Citation :- Efficient crop residue management under conservation agriculture for improving soil quality: A review. Farm. Manage. 8: 59-71
MASINA SAIRAM, SAGAR MAITRA, CHABOLU VENKATA RAGHAVA, TADIBOINA GOPALA KRISHNA, DINKAR J. GAIKWAD, UPASANA SAHOO AND SUMIT RAY sagar.maitra@cutm.ac.in
Address : Department of Agronomy and Agroforestry, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha-761211, India
Submitted Date : 27-11-2023
Accepted Date : 23-12-2023

Abstract

The intensification of cropping system is mandatory for a populus country like India. However, the enhancement of the cropping intensity simultaneously generates a huge quantity of crop residues. Presently, improper management of crop residues as well as in-situ burning of the same has become a prominent issue for adversely affecting the environment and loosing valuable plant nutrients. The conservation agriculture (CA) has shown a proven path where crop residues can be effectively utilized for improvement of the soil quality. Based on the above facts, an initiative has been taken to focus on efficient use of crop residues for improving soil quality vis-à-vis soil health. There are versatile uses of crop residues, however, they are equally potential in advancement of soil health. One of the main principles of CA is the inclusion of crop residues on the crop field as soil cover along with crop diversification and minimal soil disturbance. The inclusion of crop residues is potentially important for the improvement of physical, chemical and biological properties of the soil. Moreover, after decomposition, they add nutrients to the soil leading to enhanced soil fertility and crop productivity. Long-term application of crop residues under CA practices, more particularly with reduced and zero tillage, has been identified as an approach to increase soil productivity, increase the C-pool and promote the improved agroecosystem. The review article has focused on the inclusion of crop residues on improvement of soil physical, chemical and biological properties.
 

Keywords

Biochar compost conservation agriculture crop residue burning enhanced soil fertility soil properties 


References

AbdelRahman, M. A. E. (2023). An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rend. Fis. Acc. Lincei. 34: 767–808. https://doi.org/10.1007/s12210-023-01155-3.
Ali, A., Ghani, M. I., Haiyan, D., Iqbal, M., Cheng, Z. and Cai, Z. (2020). Garlic substrate induces cucumber growth development and decreases Fusarium wilt through regulation of soil microbial community structure and diversity in replanted disturbed soil. Int. J. Mol. Sci. 21: doi.org/10.3390/ijms21176008.
Asif, M., Nawaz, M. F., Ahmad, I., Rashid, M. H. U., Farooq, T. H., Kashif, M., Gul, S. and Li, Q. (2023). Detrimental effects of induced soil compaction on morphological adaptation and physiological plasticity of selected multipurpose tree species. Plants. 12(13): doi.org/10.3390/ plants12132468.
Aynehband, A., Gorooei, A. and Moezzi, A. A. (2017). Vermicompost: An eco-friendly technology for crop residue management in organic agriculture. Energy Procedia 141: 667-71.
Bhardwaj, A. K., Malik, K., Rani, M., Mandal, U. K., Basak, N., Singh, A., Yadav, R. K., Chaudhari, S. K. and Sharma, D. K. (2023). Residue recycling options and their implications for sustainable nitrogen management in rice–wheat agroecosystems. Ecol. Process 12: doi.org/ 10.1186/s13717-023-00464-7.
Bharti, V. and Saha, A. (2021). Role of cover crops and crop residues in conservation agriculture: A review. J. Pharm. Innov. SP-10: 1445-48.
Bhattacharya, U., Naskar, M. K., Venugopalan, V. K., Sarkar, S., Bandopadhyay, P., Maitra, S., Gaber, A., Alsuhaibani, A. M. and Hossain, A. (2023). Implications of minimum tillage and integrated nutrient management on yield and soil health of rice-lentil cropping system – being a resource conservation technology. Front. Sustain. Food Syst. 7: doi:10.3389/fsufs. 2023.1225986.
Bhuvaneshwari, S., Hettiarachchi, H. and Meegoda, J. N. (2019). Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health. 16: doi: 10.3390/ijerph16050832. 
Branca, G., McCarthy, N., Lipper, L. and Jolejole, M. C. (2011). Implementing sustainable practices for managing crop residues stands out as a more environmentally friendly option in crop production. Available online: https://www.fao.org/climatechange/29764-0aa5796a4fb093b6cfdf05558c6dd20bb.pdf. Accessed on 29 August 2023.
Brichi, L., Fernandes, J. V. M., Silva, B. M., Vizú J. D. F., Junior, J. N. and  Cherubin, M. R. (2023). Organic residues and their impact on soil health, crop production and sustainable agriculture: A review including bibliographic analysis. Soil Use Manage. 39:  686-706.
Butterly, C., Baldock, J. A. and Tang, C. (2012). The contribution of crop residues to changes in soil pH under field conditions. Plant Soil 366: 185-98.
Cao, Q., Li, G., Yang, F., Kong, F., Cui, Z., Jiang, X., Lu, Y. and Zhang, E. (2021). Eleven-year mulching and tillage practices alter the soil quality and bacterial community composition in Northeast China. Arch. Agron. Soil Sci. 68: doi:10.1080/ 03650340.2021.1890719.
Chatterjee, S., Bandyopadhyay, K. K., Pradhan, S., Singh, R., Datta, S. P. (2018). Effects of irrigation, crop residue mulch and nitrogen management in maize (Zea mays L.) on soil carbon pools in a sandy loam soil of Indo-gangetic plain region. Catena 165: 207-216.
Chen, J., Gong, Y., Wang, S., Guan, B., Balkovic, J. and Kraxner, F. (2019). To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Sci. Total Environ. 662: 141-50.
Chen, S., Xu, C., Yan, J., Zhang, X., Zhang, X. and Wang, D. (2016). The influence of the type of crop residue on soil organic carbon fractions: An 11-year field study of rice-based cropping systems in southeast China. Agric. Ecosyst. Environ. 223: 261-69.
Cheng, S., Chen, T., Xu, W. B., Huang, J., Jiang, S. and Yan, B. (2020). Application research of biochar for the remediation of soil heavy metals contamination: A review. Molecules 25doi.org/10.3390/molecules25143167.
Cherubin, M. R., Oliveira, D. M., Feigl, B. J., Pimentel, L. G., Lisboa, I. P., Gmach, M. R., Varanda, L. L., Morais, M. C., Satiro, L. S., Popin, G. V. and Paiva, S. R. D. (2018). Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Sci. Agric. 75: 255-72.
Coulibaly, S. S., Touré, M., Kouamé, A. E., Kambou, I. C., Soro, S. Y., Yéo, K. I. and Koné, S. (2020). Incorporation of crop residues into soil: A practice to improve soil chemical properties. Agric. Sci. 11: 1186-98. doi.org/10.4236/as.2020.1112078.
Drost, S. M., Rutgers, M., Wouterse, M., De Boer, W. and Bodelier, P. L. E. (2019) Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 361: doi.org/10.1016/j.geoderma.
Dutta, A., Patra, A., Hazra, K. K., Nath, C. P., Kumar, N. and Rakshit, A. (2022). A state of the art review in crop residue burning in India: Previous knowledge, present circumstances and future strategies. Environ. Challenges. 8: doi.org/10.1016/j.envc.2022.100581.
Escalante Ortiz, L. E. (2019). Nematode populations as affected by residue and water management in a long-term wheat-soybean double crop in Eastern Arkansas. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3467.
FAO (2017a). Soil organic carbon: The hidden potential. Food and Agriculture Organization of the United Nations Rome, Italy. Available online: https://www.fao.org/3/i6937e/i6937e.pdf, accessed on 29 August 2023.
FAO (2017b). The future of food and agriculture – Trends and challenges, Rome. Available online: https://www.fao.org/3/i6583e/i6583e.pdf, accessed on 29 August 2023.
FAO (2023). Biochar in sustainable soil management: Potential and constraints. Available online: https://www.fao.org/3/cc8733en/cc8733en.pdf (accessed on 29 August 2023).
Fontaine, D., Eriksen, J. and Sørensen P. (2020). Cover crop and cereal straw management influence the residual nitrogen effect. Eur. J. Agron. 118: doi:10.1016/j.eja.2020.126100.
Fu, B., Chen, L., Huang, H., Qu, P. and Zhenggui Wei, Z. (2021) Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavail. 33: 164-73. doi.org/10.1080/ 26395940.2021.1948354.
Gaikwad, D. J., Ubale, N. B., Pal, A., Singh, S., Ali, M. A. and Maitra, S. (2022). Abiotic stresses impact on major cereals and adaptation options - A review. Res. Crop. 23: 896–915.
Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 8doi.org/10.3390/su8030281.
Grzyb, A., Wolna-Maruwka, A. and Niewiadomska, A. (2020). Environmental factors affecting the mineralization of crop residues. Agronomy 10: doi.org/10.3390/agronomy10121951.
Guo, Z. B., Liu, H., Hua, K., Wang, D. and He, C. (2018). Long-term straw incorporation benefits the elevation of soil phosphorus availability and use efficiency in the agroecosystem. Span. J. Agric. Res. 16: Available from http://revistas.inia.es/index.php/ sjar/article/view/12857/4121.
Hettiarachchi, H., Meegoda, J. N., Ryu, S. (2018). Organic waste buyback as a viable method to enhance sustainable municipal solid waste management in developing countries. Int. J. Environ. Res. Public Health 15: doi: 10.3390/ijerph15112483.
Hoornweg, D. and Bhada-Tata, P. (2012). What a Waste: A Global Review of Solid Waste Management. World Bank; Washington, DC, USA.
Hossain, A., Mottaleb, K. A., Maitra, S., Mitra, B., Ahmed, S., Sarker, S., Chaki, A. K. and Laing, A. M. (2021a). Next-generation, climate resilient crop management practices for food security and environmental health. In: Conservation agriculture: A sustainable approach for soil health and food security, Aftab, T. and Hakeem, K. R. (eds.), Academic Press, pp. 585 ̶609. doi.org/10.1016/B978-0-323-90943-3.00008-0.
Hossain, A., Mottaleb, K. A., Maitra, S., Mitra, B., Alam, M., Ahmed, S., Islam, M., Sarker, K. K., Sarker, S., Chaki, A. K., Muhammad, A. H., Skalicky, M., Brestic, M. and Laing, A. M. (2021b). Conservation agriculture improves soil health: Major research findings from Bangladesh, In: Conservation agriculture: A sustainable approach for soil health and food security, Jayaraman, S., Dalal, R. C., Patra, A. K. and Chaudhari, S. K. (eds.), Springer, Singapore. pp. 511-61. /doi.org/10.1007/978-981-16-0827-8_26.
Hossain, A., Ali, M. E., Maitra, S., Bhadra, P., Rahman, M. M. E., Ali, S. and Aftab, T. (2022). The role of soil microorganisms in plant adaptation to abiotic stresses: Current scenario and future perspectives. In: Plant Perspectives to Global Climate Changes, Roychoudhury, A. and Aftab, T. (Eds.), Academic Press. pp. 233-78.
IAEA (2003). International Atomic Energy Agency, Austria. Management of crop residues for sustainable crop production. Available online: https://www-pub.iaea.org/MTCD/ Publications/PDF/te_1354_web.pdf, accessed on 29 August 2023. 
Janz, B., Havermann, F., Lashermes, G., Zuazo, P., Engelsberger, F., Torabi, S. M. and Butterbach-Bahl, K. (2022). Effects of crop residue incorporation and properties on combined soil gaseous N2O, NO, and NH3 emissions—A laboratory-based measurement approach. Sci. Total Environ. 807: doi.org/10.1016/j.scitotenv.2021.151051.
Jena, J., Maitra, S., Hossain, A., Pramanick, B., Gitari, H. I., Praharaj, S., Shankar, T., Palai, J. B., Rathore, A., Mandal, T. K. and Jatav, H. S. (2022). Role of legumes in cropping systems for soil ecosystem improvement. In: Ecosystem services, Jatav, H. S. (eds.), Nova, USA.pp. 1 ̶ 21.
Jinger, D., Kaushal, R., Kumar, R., Paramesh, V., Verma, A., Shukla, M., Chavan, S. B., Kakade, V., Dobhal, S., Uthappa, A. R., Roy, T., Singhal, V., Madegowda, M., Kumar, D., Khatri, P., Dinesh, D., Singh, G., Singh, A. K., Nath, A. J., Joshi, N., Joshi, E. and Kumawat, S. (2023). Degraded land rehabilitation through agroforestry in India: Achievements, current understanding, and future prospectives. Front. Ecol. Evol. 11doi.org/10.3389/ fevo.2023.1088796.
Kaur, M., Malik, D. P., Malhi, G. S., Bolan, N. S., Lal, R. and Siddique, K. H. M. (2022). Rice residue management in the Indo-Gangetic Plains for climate and food security. A review. Agron. Sustain. Dev. 42: doi.org/10.1007/s13593-022-00817-0.
Kebede, E. (2021). Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front. Sustain. Food Syst. 5: doi.org/10.3389 /fsufs.2021.767998.
Kumari, K., Kumar, R., Bordoloi, N., Minkina, T., Keswani, C. and Bauddh, K. unravelling the recent developments in the production technology and efficient applications of biochar for agro-ecosystems. Agriculture 13: doi.org/10.3390/agriculture13030512.
Baidoo, I., Sarpong, D. B. and Bolwig, S. (2016). General rights biochar amended soils and crop productivity: A critical and meta-analysis of literature. Int. J. Dev. Sustain. 5: 414-32.
Leharwan, M., Kumar, Y., Kumar, R., Kumar Saraswat, P., Kumar, R., Kumar Thaliyil Veetil, A., Bhattacharjee, S., Kumar, A. and Kumar, S. (2023). Assessing the effects of conservation tillage and in-situ crop residue management on crop yield and soil properties in rice–wheat cropping system. Sustainability 15: doi.org/10.3390/su151712736.
Lei Z., Chen J., Zhang Z., Sugiura N. (2010). Methane production from rice straw with acclimated anaerobic sludge: Effect of phosphate supplementation. J. Bioresour. Technol. 101: 4343-48. doi: 10.1016/j.biortech.2010.01.083.
Liu, Z., Gao, T., Tian, S., Hu, H., Li, G. and Ning, T. (2020). Soil organic carbon increment sources and crop yields under long-term conservation tillage practices in wheat-maize systems. Land Degrad. Dev. 31: 1138-50.
Lohan, S. K., Jat, H. S., Yadav, A. K., Sidhu, H. S., Jat, M. L., Choudhary, M., Jyotsna Kiran, P. and Sharma P. C. (2018). Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 81: 693-706. doi: 10.1016/j.rser.2017.08.057.
Lou, Y., Xu, M., Wang, W., Sun, X. and Zhao, K. (2011). Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Tillage Res. 113: 70-73.
Maitra, S., Palai, J. B., Manasa, P. and Prasanna Kumar, D. 2019. Potential of intercropping system in sustaining crop productivity. Int. J. Agric. Environ. Biotechnol. 12: 39-45.
Maitra, S., Sahoo, U., Sairam, M., Gitari, H.I., Rezaei-Chiyaneh, E., Battaglia, M. L. and Hossain, A. 2023a. Cultivating sustainability: A comprehensive review on intercropping in a changing climate. Res. Crop. 24 (4): 702-15.
Malobane, M. E., Nciizah, A. D., Mudau, F. N. and Wakindiki, I. I. (2020). Tillage, crop rotation and crop residue management effects on nutrient availability in a sweet sorghum-based cropping system in marginal soils of South Africa. Agronomy 10: doi.org/10.3390/ agronomy10060776.
Manasa, P., Maitra, S. and Barman, S. (2020). Yield attributes, yield, competitive ability and economics of summer maize-legume intercropping system. Int. J. Agric. Environ. Biotechnol. 13: 33 ̶-38.
Maneepitak, S., Ullah, H., Paothong, K., Kachenchart, B., Datta, A. and Shrestha, R. P. (2019). Effect of water and rice straw management practices on yield and water productivity of irrigated lowland rice in the central plain of Thailand. Agric. Water Manage. 211: 89–97.
Maurya, R., Bharti, C., Singh, T. and Pratap. V. (2020). Crop residue management for sustainable agriculture. Int. J. Curr. Microbiol. App. Sci. 9: 3168-74.
Mbarki, Y., Gumiere, S.J., Celicourt, P. and Brédy, J. (2023). Study of the effect of the compaction level on the hydrodynamic properties of loamy sand soil in an agricultural context. Front. Water 5: doi.org/10.3389/frwa.2023.1255495.
Mirriam, A., Mugwe, J., and Raza, M. A., Seleiman, M. F., Maitra, S. and Gitari, Harun H. (2022). Aggrandizing soybean yield, phosphorus use efficiency and economic returns under phosphatic fertilizer application and inoculation with Bradyrhizobium, J. Soil Sci. Plant Nutri. 2022: doi.org/10.1007/s42729-022-00985-8.
Misra R.V., Roy R.N. and Hiraoka H. (2003). On Farm Composting Methods. Food and Agricultural Organization of the United Nations; Rome, Italy.
Mwakidoshi, E. R., Gitari, H. I., Muindi, E. M., Wamukota, A., Seleiman, M. F. and Maitra, S. (2023). Smallholder farmers' knowledge on the use of bioslurry as a soil fertility amendment input for potato production in Kenya. Land Degrad Dev. 34: 2214-27. doi: 10.1002/ldr.4601.
NAAS (2012). Management of crop residues in the context of conservation agriculture, Policy paper No. 58, National Academy of Agricultural Sciences, New Delhi, India. pp. 12.
Nakaya, Y., Nakashima, S. and Moriizumi, M. (2018). Nondestructive spectroscopic tracing of simulated formation processes of humic-like substances based on the maillard reaction, Appl. Spectrosc. 72: 1189-98, doi.org/10.1177/0003702818775737.
Nandi, S., Panda, M., Sairam, M., Palai, J. B. and Sahoo, U. (2022). Suitable options for agricultural waste management in India. Indian J. Nat. Sci. 13: 41421-26.
Nduwimana, D., Mochoge, B., Danga, B., Masso, C., Maitra, S. and Gitari, H. I. (2020). Optimizing nitrogen use efficiency and maize yield under varying fertilizer rates in Kenya. Int. J. Biores. Sci., 7: 63-73.
Nguyen, T. P., Koyama, M. and Nakasaki, K. (2022). Effects of oxygen supply rate on organic matter decomposition and microbial communities during composting in a controlled lab-scale composting system. Waste Manage. 153: 275-82, doi.org/10.1016/j.wasman.2022.09.004.
Nie, S., Lei, X., Zhao, L., Brookes, P. C., Wang, F., Chen, C., Yang, W. and Xing, S. (2018). Fungal communities and functions response to long-term fertilization in paddy soils. Appl. Soil Ecol. 130: 251-58.
Nyanga, P. H., Umar, B. B., Chibamba, D., Mubanga, K., Kunda-Wamuwi, C. and Mushili, B. (2020). Reinforcing ecosystem services through conservation agriculture in sustainable food systems. In: The role of ecosystem services in sustainable food system, Rusinamhodzi, L. (eds.), Elsevier Inc., The Netherlands, Academic Press. pp. 119-33.
Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M.G., Jing-Yi, L. et al. (2020). Food waste composting and microbial community structure profiling. Processes 8:  doi.org/10.3390/pr8060723.
Pan, X. Y., Shi, R. Y., Hong, Z. N., Jiang, J., He, X., Xu, R. K. and Qian, W. (2021a). Characteristics of crop straw-decayed products and their ameliorating effects on an acidic Ultisol. Arch. Agron. Soil Sci. 67: 1708-1721. doi.org/10.1080/03650340.2020.1805104.
Pan, X. Y., Xu, R. K., Nkoh, J. N., Lu, H. L., Hua, H. and Guan, P. (2021b). Effects of straw decayed products of four crops on the amelioration of soil acidity and maize growth in two acidic Ultisols. Environ. Sci. Pollut. Res. 28: 5092-5100.
Panda, M., Nandi, S., Sahoo, U. and Sairam, M. (2022). Integrated farming system for agricultural sustainability. Indian J. Nat. Sci. 13: 41311-17.
Parewa, H. P., Meena, V. S., Meena, S. K., Choudhary, A. and Kumar, M. (2023). 3 - Carbon management strategies for sustainable food production systems. In: Agricultural Soil Sustainability and Carbon Management, Meena, S. K., Ferreira, A. D. O., Meena, V. S., Rakshit, A., Shrestha, R. P., Rao, C. H. S. and Siddique, K. H. M. (eds.), Academic Press. pp. 69-98. doi.org/10.1016/B978-0-323-95911-7.00003-7.
Pascual, I., Antolín, M. C., García, C., Polo, A. and Díaz, M.S. (2007). Effect of water deficit on microbial characteristics in soil amended with sewage sludge or inorganic fertilizer under laboratory conditions, Bioresour. Technol. 98: 29-37. doi.org/10.1016/j.biortech.2005.11.026.
Pei, F., Cao, X., Sun, Y, Kang, J., Y. Ren, Y. and J. Ge, J. (2023). Manganese dioxide eliminates the phytotoxicity of aerobic compost products and converts them into a plant friendly organic fertilizer. Bioresour. Technol. 373: doi.org/10.1016/j.biortech.2023.128708.
Praharaj, S. and Maitra, S. (2020). Importance of legumes in agricultural production system: An overview. Agro-Econ. 7: 69-71.
Prashanth, D. V., Thippeshappa, G. N., Dhananjaya, B. C., Harsha, B. R. and Nandeesha C. V. (2023). Residual effect of enriched arecahusk compost on growth and yield of green gram in maize-greengram cropping sequence under Southern transition argoclimatic zone of Karnataka. Pharma Innov. J. 12: 2662-71.
Qayyum, M. F., Liaquat, F., Rehman, R. A., Gul, M., Hye, M. Z. U., Rizwan, M. and Rehaman, M. Z. U. (2017). Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. Environ. Sci. Pollut. Res. 24: 26060-68, doi.org/10.1007/s11356-017-0227-4.
Raffa, D. W., Bogdanski, A. and Tittonell, P. (2015). How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors. Biomass Bioenergy 81: 345-55. doi.org/10.1016/j.biombioe.2015.07.022.
Raza, M. H., Abid, M., Yan, T., Naqvi, S. A. A., Akhtar, S. and Faisal, M. (2019). Understanding farmers’ intentions to adopt sustainable crop residue management practices: A structural equation modeling approach. J. Clean. Prod. 227: 613-23.
Rezaei‑Chiyaneh, E., Mahdavikia, H., Alipour, H., Dolatabadian, A., Battaglia, M.L., Sagar Maitra, S. and Harrison, M. T. (2023). Biostimulants alleviate water deficit stress and enhance essential oil productivity: A case study with savory. Sci. Rep. 13: doi.org/10.1038/s41598-022-27338-w.
Rebouh, N. Y., Khugaev, C. V., Utkina, A. O., Isaev, K. V., Mohamed, E. S. and Kucher, D. E. (2023). Contribution of eco-friendly agricultural practices in improving and stabilizing wheat crop yield: A review. Agronomy 13: doi.org/10.3390/agronomy13092400.
Reddy, K. J. and Goudra, S. (2023). A review on crop residue burning: Impact and its management. J. Pharm. Innov. 12: 2457-62.
Rezig, F. A. M., Mubarak, A. R. and Ehadi, E. A. (2013). Impact of organic residues and mineral fertilizer application on soil–crop system: II soil attributes. Arch. Agron. Soil Sci. 59: 1245-61.
Sagar, L., Praharaj, S., Singh, S., Attri, M., Pramanick, B., Maitra, S., Hossain, A., Shankar, T., Palai, J. B. and Sahoo, U. (2022). Drought and heat stress tolerance in field crops: consequences and adaptation strategies. In: Response of Field Crops to Abiotic Stress, Current Status and Future Prospects, Chaudhury, S. and Moulick, D. (eds.), CRC Press. pp. 91-102. doi.org/10.1201/9781003258063-8.
Sagar, L., Singh, S., Sharma, A., Maitra, S., Attri, M., Sahoo, R. K., Ghasil, B. P., Shankar, T., Gaikwad, D. J., Sairam, M., Sahoo, U., Hossain, A. and Roy, S. (2023). Role of soil microbes against abiotic stresses induced oxidative stresses in plants. In: Mathur, P., Kapoor, R., Roy, S. (eds) Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. Rhizosphere Biology, Springer Nature Singapore Pte Ltd., pp. 149-77. doi.org/10.1007/978-981-99-0030-5_7.
Sahoo, U., Maitra, S., Dey, S., Vishnupriya, K. K., Sairam, M. and Sagar, L. (2023a). Unveiling the potential of maize-legume intercropping system for agricultural sustainability: A review. Farm. Manage. 8: 1-13.
Sahoo, U., Maitra, S., Sairam, M., and Sagar, L. (2023b). Potential and advantage of pearl millet -legume intercropping system: A review. Int. J. Biores. Sci. 10: 99-106.
Sairam, M., Maitra, S., Praharaj, S., Nath, S., Shankar, T., Sahoo, U., Santosh, D. T., Sagar, L., Panda, M., Shanti Priya, G., Ashwini, T. R., Gaikwad, D. J., Hossain, A., Pramanick, B., Jadav, H. S., Gitari, H. I. and Aftab, T. (2023b). An insight into the consequences of emerging contaminants in soil and water and plant responses. In:  Emerging contaminants and plants: Interactions, adaptations and remediation technologies, Aftab, T. (eds.), Cham, Springer International Publishing. pp. 1–27.
Sairam, M., Mondal, T. K., Gaikwad, D. J., Pramanick, B. and Maitra, S. (2023a). Conservation agriculture impacts on soil organic carbon and soil properties. In: Advances in Agricultural Technology, Maitra, S., Gaikwad, D. J. and Santosh, D. T. (eds.), Published by Griffon, Canada. pp. 267-83.
Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S., Ray, K. and Brahmachari, K. (2020). Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability 12: doi.org/10.3390/su12239808.
Sayara, T., Basheer-Salimia, R., Hawamde, F. and Sánchez, A. (2020). Recycling of organic wastes through composting: process performance and compost application in agriculture. Agronomy 10: doi.org/10.3390/agronomy10111838.
Shahane, A. A. and Shivay, Y. S. (2021). Soil health and its improvement through novel agronomic and innovative approaches. Front. Agron. 3: doi.org/10.3389/fagro.2021.680456.
Shen, Z., Ruan, Y., Wang, B., Zhong, S., Su, L., Li, R. and Shen, Q. (2015). Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Appl. Soil Ecol. 93: 111-19.
Shinde, R., Shahi, D. K., Mahapatra, P., Naik, S. K., Thombare, N. and Singh, A. K. 2022. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review. J. Environ. Manage. 320: doi.org/10.1016/j.jenvman.2022.115843.
Simansky, V. and Kovacik, P. (2015). Long-term effects of tillage and fertilization on pH and sorption parameters of haplic luvisol. J. Elem. 20: 1033-40.
Singh, S. P., Pramanick, B., Maitra, S., Yadav, V. R. and Mahapatra, B. S. (2020). Crop residue management, In: Advanced Agriculture, Maitra, S. and Pramanick, B. (eds.), New Delhi Publishers, India. pp. 195-210.
Singh, V. K., Dwivedi, B. S., Singh, S. K., Mishra, R. P., Shukla, A. K., Rathore, S. S., Shekhawat, K., Majumdar, K. and Jat, M. L. (2018). Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India. Field Crop. Res. 224: 1-12.
Srinivasarao, C. H., Venkateswarlu, B., Lal, R., Singh, A. K. and Sumanta, K. (2013). Sustainable management of soils of dryland ecosystems for enhancing agronomic productivity and sequestering carbon. Adv. Agron.  121: 253-29.
Su, Y., Lv, J. L., Yu, M., Ma, Z. H., Xi, H., Kou, C. L., He, Z. C. and Shen, A. L. (2020a). Long-term decomposed straw return positively affects the soil microbial community. J. Appl. Microbiol. 128: 138-50.
Su, Y., Yu, M., Xi, H., Lv, J., Ma, Z., Kou, C. and Shen, A. (2020b). Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Sci. Rep. 10: doi.org/10.1038/s41598-020-63409-6.
Thorat, T. N., Agrawal, K. K., Kewat, M. L., Jha, G. and Silawat, S. (2015). Crop residue management with conservation agriculture for sustaining natural resources. JNKVV  Res. J. 49: 125-36.
Valkama, E., Kunypiyaeva, G., Zhapayev, R., Karabayev, M., Zhusupbekov, E., Perego, A., Schillaci, C., Sacco, D., Moretti, B., Grignani, C. and Acutis, M. (2020). Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma. 369:  doi.org/ 10.1016/j.geoderma.2020.114298.
Wander, M. M., Cihacek, L. J., Coyne, M., Drijber, R. A., Grossman, J. M., Gutknecht, J. L., Horwath, W. R., Jagadamma, S., Olk, D. C., Ruark, M. and Snapp, S. S. (2019). Developments in agricultural soil quality and health: Reflections by the research committee on soil organic matter management. Front. Environ. Sci. 7: doi.org/10.3389/fenvs.2019.00109.
Wang, X., Qi, J. Y., Zhang, X. Z., Li, S. S., Virk, A. L., Zhao, X., Xiao, X. P. and Zhang, H. L. (2019). Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil Tillage Res. 194: doi:10.1016/ j.still.2019.104339
Xiao, Y., Zhou, M., Li, Y., Zhang, X., Wang, G., Jin, J., Ding, G., Zeng, X. and Liu, X. (2022). Crop residue return rather than organic manure increases soil aggregate stability under corn–soybean rotation in surface mollisols. Agriculture. 12: doi.org/10.3390/agriculture12020265.
Xu, P., Shu, L., Li, Y., Zhou, S., Zhang, G., Wu, Y. and Yang, Z. (2023). Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 9: doi.org/10.1016/j.heliyon.2023.e16311.
Yadav, G. S., Das, A., Lal, R., Babu, S., Datta, M., Meena, R. S., Patil, S. B. and Singh, R. (2019). Impact of no tillage and mulching on soil carbon sequestration under rice (Oryza sativa L.) rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agri. Ecosyst. Environ. 275: 81–92. doi.org/ 10.1016/j.agee.2019.02.001.
Zhang, C., Lin, Z., Que, Y., Fallah, N., Tayyab, M., Li, S., Luo, S., Luo, J., Zhang, Z., Abubakar, A. Y. and Zhang, H. (2021). Straw retention efficiently improves fungal communities and functions in the fallow ecosystem. BMC Microbiol. 21: doi.org/10.1186/s12866-021-02115-3.
Zhao, X., Liu, B. Y., Liu, S. L., Qi, J. Y., Wang, X., Pu, C., Li, S. S., Zhang, X. Z., Yang, X. G., Lal, R. and Chen, F. (2020). Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degrad. Dev. 31: 694-709.
Zhou, L., Yang, X., Wang, X., Feng, L., Wang, Z., Dai, J., Zhang, H. and Xie, Y. (2023). Effects of bacterial inoculation on lignocellulose degradation and microbial properties during cow dung composting. Bioengineered. 14: 213-228. doi: 10.1080/21655979.2023.2185945.

Global Footprints