Loading...

Vermicomposting, a key to sustainable agriculture: A review




DOI: 10.31830/2456-8724.2023.FM-128    | Article Id: FM-128 | Page : 81-93
Citation :- Vermicomposting, a key to sustainable agriculture: A review. Farm. Manage. 8: 81-93
RAJAN MANCHAL, TUYISHIME VENUSTE AND SANJEET RAJ VERMA rajanmanchal00099@gmail.com
Address : Department of Agriculture, Maharishi Markandeshwar University, (Deemed to be University), Mullana-Ambala, Haryana- 133203, India
Submitted Date : 26-11-2023
Accepted Date : 21-12-2023

Abstract

Vermicomposting, the process of using earthworms to convert biodegradable material into nutrient-rich vermicast, stands as a fundamental practice in sustainable agriculture. Rich in growth-promoting hormones, enzymes, and microorganisms, vermicast significantly boosts plant growth and enhances resistance to diseases. Given the staggering global annual production of organic waste, expected to increase from 1.3 billion to 2.2 billion tons by 2025, vermicomposting emerges as an eco-friendly and organic fertilizer production method. Earthworms, historically revered as "natural ploughmen" by Charles Darwin, contribute to soil health, influencing microbial communities and nutrient availability while mitigating the effects of heavy metals. The application of vermicompost results in higher crop yields and improved fruit quality, emphasizing the need for careful nutrient balance. Vermicomposting positively influences soil structure, reducing bulk density, enhancing water retention, and mitigating nitrate leaching, thereby promoting environmental sustainability. Its favourable impact on soil biology, including microbial biomass and enzyme activity, fosters a healthier soil ecosystem. In conclusion, vermicomposting presents a precise and effective solution for organic waste management, playing a pivotal role in the future of agriculture and contributing significantly to environmental conservation.

Keywords

Earthworms organic waste management soil health enhancement sustainable agriculture vermicomposting 


References

Adhikary, S. (2012). Vermicompost, the story of organic gold: A review. Agric. Sci. 3: 905-17.
Adhikary, S. and Mondal, N. K. (2018). Effect of vermicompost on growth, yield, and quality of tuber crops (potato and ginger). Int. J. Recycl. Organic Waste Agric. 7: 325-32.
Aira, M., Gómez, B. M., Lazcano, C., Baath, E., Domínguez, J. (2010). Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42: 2276-81. 
Aksakal, E. L., Sari, S. and Angin, I. (2016). Effects of vermicompost application on soil aggregation and certain physical properties. Land Deg. Dev. 27: 983-95.
Ali, S. and Kashem, M. A. (2018). Effect of vermicompost on the growth and yield of cabbage. J. Agric. Eng. Food Technol. 5: 45-49.
Ali, U., Sajid, N., Khalid, A., Riaz, L., Rabbani, M. M., Syed, J. H. and Malik, R. N. (2015). A review on vermicomposting of organic wastes. Environ. Progress Sustain. Energy 34: 1050-62.
Aminifard, M. and Bayat, H. (2016). Effect of vermicompost on fruit yield and quality of bell pepper. Int. J. Hort. Sci. Technol. 3: 221-29.
Amooaghaie, R. and Golmohammadi, S. (2017). Effect of vermicompost on growth, essential oil, and health of Thymus vulgarisCompost Sci. Util. 25: 166-77.
Amyanpoori, S., Ovassi, M. and Fathinejad, E. (2015). Effect of vermicompost and triple superphosphate on yield of corn (Zea Mays L.) in Behbahan. J. Exp. Biol. Agric. Sci. 3: 494-99.
Ansari, A. A. and Ismail, S. A. (2012). Role of earthworms in verm technology. J. Agric. Technol. 8: 403-15.
Arancon, N. Q., Edwards, C. A., Bierman, P. and Metzger, J. D. (2005). Suppression of two-spotted spider mite (Tetranychus urticae), mealybug (Pseudococcus sp.), and aphid (Myzus persicae) populations and damage by vermicompost. Crop Prot. 24: 855-61.
Bahuguna, A., Mengwal, B., Nautiyal, B. P. and Bahuguna, S. (2016). Effect of nitrogen, phosphorus and potash with vermicompost efficiency on the growth and yield attributes of sweet pepper (Capsicum frutescent) under Uttarakhand hills condition. World J. Pharm. Pharma. Sci. 5: 588-97.
Barik, T., Gulati, J. M. L., Garnayak, L. M. and Bastia, D. K. (2011). Production of vermicompost from agricultural wastes. Agric. Rev. 31:172-83.
Basheer, M. and Agrawal, O. P. (2015). Effect of some additives on vermicomposting of garden waste using Eudrilus eugenia, an epigenic earthworm. World J. Zoology 10: 153-60.
Celik, A., Belliturk, K. and Sakin, E. (2020). Agriculture-friendly biofertilizers in waste management: vermicompost and biochar. In book: New Approaches and Applications in Agriculture. Publisher: Iksad Publishing. pp.150-60.
Dhanalakshmi, V., Remia, K. M., Shanmugapriyan, R. and Shanthi, K. (2014). Impact of addition of vermicompost on vegetable plant growth. Int. Res. J. Biol. Sci. 3: 56-61.
Dhanya, N. P., Raman, N. and Kumaravel, V. (2014). Effect of vermicompost on growth, yield, and nutrient content of leguminous crops. J. Appl. Nat. Sci. 6: 550-56.
Domínguez, J. (2004). State-of-the-art and new perspectives on vermicomposting research. Earthworm Ecol. 12: 453-68.
Edwards, C. A. and Arancon, N. Q. (2004). The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. Soil Ecol. Manag. 35: 2-10.
Edwards, C.A., Arancon, N.Q. and Sherman, R. (1992). Biology and ecology of earthworms. Chapman and Hall.
Fudzagbo, T. and Abdulraheem, M. I. (2020). Vermicompost technology: Impact on the environment and food security.  Agric. Environ. 1:  87-93.
Gajalakshmi, S. and Ramasamy, E. V. (2015). Vermicomposting of press mud on oilseed crop production. Int. J. Curr. Microbiol. Appl. Sci. 4: 296-301.
Gopalakrishnan, S., Pande, S., Sharma, M., Humayun, P., Kiran, B. K. and Sandeep, D. (2011). Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 30: 1070-78.
Gopinath, K. A. and Nair, S. M. (2014). Influence of vermicompost on the growth and essential oil content of culinary herbs (rosemary and thyme). J. Essential Oil-Bearing Plants 17: 966-74.
Guerrero III, R. D. (2010). Vermicompost production and its use for crop production in the Philippines. Int. J. Global Environ. Issues 10: 378-83.
Gupta, R. and Jitendra (2019). Influence of Vermicompost on growth and yield of cotton (Gossypium hirsutum L.). Int. J. Agric. Biol. 21: 1133-40.
Gutierrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A., Nafate, C. C., Abud-Archila, M. and Llaven, M. A. O. (2007). Vermicompost as a soil supplement to improve the growth, yield, and fruit quality of tomatoes (Lycopersicum esculentum). Bioresour. Technol. 98: 2781-86.
Haque, M. M., Biswas, J. C., Akter, M. and Islam, M. R. (2021). Rice yield and greenhouse gas emissions: Influence of vermicompost application rate in wetland cultivation. J.  Agric. Innov. Dev. 1: 45-54.
Hemalatha, B. (2012). Vermicomposting of fruit waste and industrial sludge. Int. J. Adv. Eng. Technol. 3: 60-63.
Hoque, T. S., Hasan, A. K., Hasan, M. A., Nahar, N., Dey, D. K., Mia, S. and Kader, M. A. (2022). Nutrient release from vermicompost under anaerobic conditions in two contrasting soils of Bangladesh and its effect on wetland rice crop. Agriculture 12: doi.org/ 10.3390/agriculture12030376.
Huang, K., Li, F., Wei, Y., Fu, X. and Chen, X. (2014). Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour. Technol. 170: 45-52.
Jouquet, E. P., Bloquel, E., Doan, T. T., Ricoy, M., Orange, D., Rumpel, C. and Duc, T. T. (2011). Do compost and vermicompost improve macronutrient retention and plant growth in degraded tropical soils? Compost Sci. Util. 19: 15-24.
Kamaleshwaran, R. and Elayaraja, D. (2021). Influence of vermicompost and FYM on soil fertility, rice productivity and its nutrient uptake. Int. J. Agric. Environ. Res. 7: 575-83.
Kaur, P., Bhardwaj, M. and Babbar, I. (2015). Effect of vermicompost and vermiwash on the growth of vegetables. Res. J. Animal Vet. Fishery Sci. 3: 9-12.
Kaur, R. and Kapoor, K. (2017). Effect of vermicompost on growth, yield, and nutrient content of spinach (Spinacia oleracea L.). Int. J. Recycling Org. Waste Agric. 6: 141-49.
Kenea, F. T. and Gedamu, F. (2018). Response of garlic (Allium sativum L.) to vermicompost and mineral N fertilizer application at Haramaya, Eastern Ethiopia. Acad. J. 13: 27-35.
Khan, M. A., Khan, M. R. and Sharma, P. (2017). Promotion of mycorrhizal associations in vermicompost-amended soils. Mycorrhiza 27: 111-19.
Khan, M. A., Sharma, V. and Verma, R. (2017). Influence of vermicompost on wheat (Triticum aestivum L.) Growth and Soil Properties. J. Soil Sci. Plant Nutr. 17: 1032-45.
Kheyri, N. (2017). Effect of the rate and application time of vermicompost on the yield and yield components of rice (Oryza sativa L.'cv. Tarom Hashemi). Appl. Field Crops Res. 30: 91-110.
Kulkarni, S. G. and Desai, A. R. (2016). Vermicompost and its impact on the growth and yield of berries (strawberry and raspberry). Int. J. Agric. Sci. Res. 6: 373-80.
Kumar, A. and Gupta, R. K. (2018). The effects of vermicompost on growth and yield parameters of vegetable crop radish (Raphanus sativus). J. Pharmacog. Phytochem. 7: 589-92.
Kumar, A., Dhyani, B. P., Rai, A. and Kumar, V. (2017). Effect of timing of vermicompost application and different levels of NPK on growth, yield attributing characters and yield of rice in the rice-wheat cropping system. Int. J. Chem. Stud. 5: 2034-38.
Kumar, S., Sharma, A. and Verma, S. (2014). Impact of vermicompost on growth and yield of rice (Oryza sativa L.) in alluvial soil. Int. J. Agric. Biol. 16: 353-60.
Kumar, S., Sharma, A. and Verma, S. (2018). Effect of vermicompost on enzyme activities in soil: A comprehensive study. J. Environ. Manag. 217: 555-63.
Lari, S. M., Abdossi1, V., Hassandokht, M. and Razmi, J. (2014). Evaluation effect of different levels of vermicompost and cocopeat on photosynthesis pigments in pepper (Capsicum Annuum L.). Bull. Environ. Pharma. Life Sci. 3: 25-28.
Lazcano, C. and Dominguez, J. (2011). The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. Soil Nutrients 10: 1-23.
Li, D., Yang, M., Hu, J., Zhang, J. and Liu, R. (2015). Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ. Sci. Poll. Res. 22: 9484-92.
Lim, S. L., Wu, T. Y., Lim, P. N. and Shak, K. P. Y. (2015). The use of vermicompost in organic farming: Overview, effects on soil and economics. J. Sci. Food Agric. 95:1143-56.
Lv, B., Zhang, D., Chen, Q. and Cui, Y. (2019). Effects of earthworms on nitrogen transformation and the corresponding genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresour. Technol. 287: 121-28.
Mahmud, A. J., Shamsuddoha, A. T. M. and Haque, M. N. (2016). Effect of organic and inorganic fertilizer on the growth and yield of rice (Oryza sativa L.). Nature Sci. 14: 45-54.
Manh, V. H. and Wang, C. H. (2013.). Vermicompost as an important component in substrate: Effects on seedling quality and growth of muskmelon (Cucumis melo L.). 4th International Conference on Agriculture and Animal Science (CAAS 2013). APCBEE Procedia 8: 32-40.
Manh, V. H. and Wang, C. H. (2014). Vermicompost as an important component in substrate: effects on seedling quality and growth of muskmelon (Cucumis melo L.). APCBEE Procedia 8: 32-40.
Manyuchi, M. M., Chitambwe, T., Phiri, A., Muredzi, P. and Kanhukamwe, Q. (2013). Effect of vermicompost, vermiwash and application time on soil physicochemical properties. Int. J. Chem. Environ. Eng. 4: 216-20.
Martin, J. P., Black, J. H. and Hawthorne, R. M. (1999). Earthworm biology and production. circular 455, Florida cooperative extension service, Institute of Food and Agricultural Sciences, University of Florida, U.S.A.
Masciandaro, G., Bianchi, V., Macci, C., Doni, S., Ceccanti, B. and Iannelli, R. (2010). The potential of on-site vermicomposting of sewage sludge in soil quality improvement. Desalin Water Treat 23: 123-28.
Medany, M. (2011). Vermiculture in Egypt: Current development and future potential Food and Agriculture Organization of the United Nations Regional Office for the Near East. – Cairo, Egypt. pp. 99.
Meena, V. S., Maurya, B. R. and Verma, R. (2019). Influence of vermicompost on soil phosphatase activity: Implications for phosphorus cycling. Environ. Sci. Poll. Res. 26: 18516-26.
Mondini, C., Cayuela, M. L., Sanchez-Monedero, M. A. and Roig, A. (2004). Changes in the microbial community during composting of different organic wastes and their influence on the resulting compost. Soil Biol. Biochem. 36: 1915-24.
Najar, I. A., Khan, A. B. and Hai, A. (2015). Effect of macrophyte vermicompost on growth and productivity of brinjal (Solanum melongena) under field conditions. Int. J. Recycling Org. Waste Agric. 4: 73-83.
Nogales, R., Guerrero, R., Benitez, E. and Medina, M. (2011). Vermicomposting of winery wastes: A laboratory study. Waste Manage. 31: 11-17.
Nowshin, L., Rahman, M. A., Paul, S. K. and Afrina, R. (2020). Yield performance of aromatic fine rice as influenced by integrated use of vermicompost and inorganic fertilizers. J. Bangladesh Agric. Univ. 18: 260-65.
Patel, M., Pandey, R. and Verma, D. (2018). Enhanced nutrient cycling in vermicompost-amended soils: A meta-analysis. Soil Use Manage. 34: 487-96.
Patil, T. D. (2013). Effect of rates of castor cake and banana pseudo stem sap on yield and quality of organically grown garlic. Ph.D. (Thesis), Navsari Agricultural University, Navsari, Gujarat, India.
Prasad, R., Verma, A. and Yadav, S. (2018). Enhancing carrot (Daucus carota L.) productivity through vermicompost application. J. Plant Nutr. 41: 16-28.
Ruan, S., Wu, F., Lai, R., Tang, X., Luo, H. and He, L. (2021). Preliminary application of vermicompost in rice production: Effects of nursery raising with vermicompost on fragrant rice performances. Agronomy 11: doi.org/10.3390/agronomy11061253.
Sahin, O., Taskin, M. B. and Kaya, E. C. (2016). The effect of phosphorus application on the mineral element concentrations of lettuce and onion plants. Nevşehir J. Sci. Technol. 5: 150-60.
Saxena, S. and Gowtham, P. (2017). Effect of vermicompost on the growth, yield, and nutrient content of leafy vegetables (spinach and lettuce). J. Plant Nutr. 40: 1907-20.
Sharma, A., Goyal, D. and Singh, J. (2015). Vermicompost is a soil supplement for the cultivation of medicinal and aromatic plants. J. Med. Plant Res. 9: 547-54.
Sharma, S. and Garg, V. K. (2016). Effect of vermicompost on yield and quality of soybean (Glycine max). Int. J. Agric. Environ. Biotechnol. 9: 11-17.
Sharma, V. and Verma, A. (2017). Vermicompost-mediated increase in soil nitrogen fixation: Mechanisms and implications. Soil Biol. Biochem.111: 67-76.
Sharma, V., Verma, R. and Singh, G. (2015). Impact of vermicompost on onion (Allium cepa L.) growth and bulb yield. Int. J. Agric. For. Life Sci. 5: 49-58.
Shen, Y., Zhang, Y., Wu, J., Zhang, N., Wang, J. and Shen, Q. (2010). Effect of consecutive monoculture of strawberry on soil microbial community structure and diversity. Plant Soil 331: 160-69.
Shrimal, P. and Khan, T. I. (2017). Studies on the effects of vermicompost on growth parameters and chlorophyll content of Bengal gram (Cicer arietinum L.) var. RSG-896. IOSR J. Environ. Sci. 11: 12-16.
Singh, A. and Singh, G. S. (2017). Vermicomposting: A sustainable tool for environmental. Wiley. doi:10.1002/tqem.21509.
Singh, A., Gupta, R. and Sharma, S. (2016). Impact of vermicompost on microbial biomass in agricultural soil. Soil Biol. Biochem. 95: 50-58.
Singh, R. and Singh, R. (2015). Effect of vermicompost on growth and yield of tomato (Solanum lycopersicum L.). J. Plant Nutr. 38: 1915-29.
Singh, R. and Verma, R. (2018). Effect of vermicompost on soil respiration rates: Insights from a long-term field study. Geoderma 331: 109-16.
Singh, R., Singh, R. and Kashyap, A. (2011). Effect of vermicompost on potato yield and nutrient content. Indian J. Agric. Sci. 81: 56-59.
Sinha, R. K., Hahn, G., Soni, B. K. and Agarwal, S. (2014). Sustainable agriculture by vermiculture: Earthworms and vermicompost can ameliorate soils damaged by agrochemicals, restore soil fertility, boost farm productivity and sequester soil organic carbon to mitigate global warming. Int. J. Agric. Res. Rev. 2: 99-114.
Sinha, R. K., Patel, U., Soni, B. K. and Li., Z. (2014). Earthworms for safe and useful management of solid wastes and wastewaters, remediation of contaminated soils and restoration of soil fertility, promotion of organic farming and mitigation of global warming: A review. J. Environ. Waste Manage. 1: 011-025.
Taciroglu, B., Kara, E. E. and Sak, T. (2016). The use of worms in the removal of heavy metals in the soil. Kahramanmaras Sutcu Imam Univ. Nat. Sci. J. 19: 201-07.
Taheri, R. E., Ansari, M. H. and Razavi, N. A. (2018). Influence of cow manure and its vermicomposting on the improvement of grain yield and quality of rice (Oryza sativa L.) in field conditions. Appl. Ecol. Environ. Res. 16: 97-110.
Varghese, T. S. and Mathew, J. (2019). Impact of vermicompost on spice crops: A case study with black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J. Spices  Aromat. Crops 28: 23-29.
Verma, A., Pandey, R. and Yadav, D. (2017). Effect of vermicompost on growth, yield, and quality of potato (Solanum tuberosum L.). European J. Soil Sci. 68: 532-41.
Verma, R., Pandey, R. and Yadav, D. (2019). Influence of vermicompost on soil microbial diversity and community structure. Appl. Soil Ecol. 136: 82-92.
Verma, S. S., Thakur, D. and Singh, V. (2019). Impact of vermicompost on growth, yield, and quality of fruit crops: A review. J. Pharmacog. Phytochem. 8: 284-90.
Verma, S., Singh, A., Pradhan, S. S., Singh, R. K. and Singh, J. P. (2017). Bio-efficacy of organic formulations on crop production: A review. Int. J. Curr. Microbiol. Appl. Sci. 6: 648-65.
Wako, F. L. and Muleta, H. D. (2022). The role of vermicompost application for tomato production: A review. J. Plant Nutr. 46: 129-44.
Wani, K. A. and Rao, R. J. (2012). Effect of vermicompost on growth of brinjal plant (Solanum melongena) under field conditions. J. New Biological Reports 1: 25-28.
Yadav, A., Gupta, R. and Sharma, S. (2018). Impact of vermicompost on growth and yield of maize (Zea mays L.) in sandy loam soil. J. Agric. Sci. Technol. 20: 450-65.
Yadav, K. D., Rajput, T. B. and Mokat, D. N. (2013). Influence of vermicompost on the growth and yield of wheat (Triticum aestivum L.) and soil properties. Int. J. Agric. Environ. Biotechnol. 6: 287-292.
Yadav, S. and Sharma, V. (2019). Impact of vermicompost on earthworm activity and soil structure. Appl. Soil Ecol. 137: 119-26.
Zucco, M. A., Walters, S. A., Chong, S. K., Klubek, B. P. and Masabni, J. G. (2015). Effect of soil type and vermicompost applications on tomato growth. Int. J. Recycling Org. Waste Agric. 4: 135-41.
Zuo, Y., Zhang, J., Zhao, R., Dai, H. and Zhang, Z. (2018). Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Scientia Horticulturae 233: 132-40.

Global Footprints