Asharaja, A. and Sahayaraj, K. (2013). Screening of insecticidal activity of brown macroalgal extracts against Dysdercuscingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J. Biopest. 6: 193-203.
Beijerinck, M. W. (1901). UeberOligonitrophileMikroben". ZentralblattfürBakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung II (in German) 7: 561–82.
Biruntha, M., Karmegam, N., Archana, J., Selvi, B. K., Paul, J. A. J., Balamuralikrishnan, B., Chang, S. W. and Ravindran, B. (2020). Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresou.Technol. 297: doi: 10.1016/j.biortech. 2019.122398.
Borges, S., Alkassab, A. T., Collison, E., Hinarejos, S., Jones, B., McVey, E., Roessink, I., Steeger, T., Sultan, M. and Wassenberg, J. (2021). Overview of the testing and assessment of effects of microbial pesticides on bees: strengths, challenges and perspectives. Apidologie 52: 1256-77.
De Bernardi, A., Marini, E., Casucci, C., Tiano, L., Marcheggiani, F., Ciani, M., Comitini, F., Taskin, E., Puglisi, E. and Vischetti, C. (2022). Ecotoxicological effects of a synthetic and a natural insecticide on earthworms and soil bacterial community. Environ. Adv. 8: doi.org/10.1016/j.envadv.2022.100225.
Edwin, E., Vasantha-Srinivasan, P., Senthil-Nathan, S., Thanigaivel, A., Ponsankar, A., Selin-Rani, S., Kalaivani, K., Hunter, W. B., Duraipandiyan, V. and Al-Dhabi, N. A. (2016). Effect of andrographolide on phosphatases activity and cytotoxicity against Spodoptera litura. Inverteb. Survival J. 13: 153-63.
Gao, M., Qi, Y., Song, W. and Zhou, Q. (2015). Biomarker analysis of combined oxytetracycline and zinc pollution in earthworms (Eisenia fetida). Chemosphere 139: 229-34.
Khan, H. A. A. (2022). An impact assessment of insecticides application on the non-targeted mosquito Aedes albopictus (Skuse) in Punjab rice fields, Pakistan. Peer J. 10: doi.org/ 10.7717/peerj.13697.
Lankadurai, B. P., Nagato, E. G., Simpson, A. J. and Simpson, M. J. (2015). Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using 1H-NMR based metabolomics. Ecotoxicol.Environ. Safety 120: 48-58.
Medo, J., Makova, J., Medova, J., Lipkova, N., Cinkocki, R., Omelka, R. and Javoreková, S. (2021). Changes in soil microbial community and activity caused by application of dimethachlor and linuron. Sci. Rep. 11: doi.org/10.1038/s41598-021-91755-6.
Monteiro, H. R., Pestana, J. L., Novais, S. C., Soares, A. M. and Lemos, M. F. (2019). Toxicity of the insecticides Spinosad and indoxacarb to the non-target aquatic midge Chironomus riparius. Sci. Total Environ. 666: 1283-91.
Murfadunnisa, S., Vasantha-Srinivasan, P., Ganesan, R., Senthil-Nathan, S., Kim, T. J., Ponsankar, A., Kumar, S. D., Chandramohan, D. and Krutmuang, P. (2019). Larvicidal and enzyme inhibition of essential oil from Sphaeranthusamaranthroides (Burm.) against lepidopteran pest Spodoptera litura (Fab.) and their impact on non-target earthworms. Biocatal. Agric. Biotechnol. 21: doi: 10.1016/j.bcab.2019.101324.
OECD (1984). Earthworm, acute toxicity tests. OECD Guidelines for the Testing of Chemicals, Section, 2. pp. 9.
Ponsankar, A., Vasantha-Srinivasan, P., Senthil-Nathan, S., Thanigaivel, A., Edwin, E. S., Selin-Rani, S., Kalaivani, K., Hunter, W. B., Alessandro, R. T., Abdel-Megeed, A. and Paik, C. H. (2016). Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol.Environ. Safety. 133: 260-70.
Rizvi, A. and Khan, M. S. (2018). Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol. Environ. Safety 157: 9-20.
Romero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas-Tapias, D. and Bonilla, R. (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiologia 49 : 377-83.
Sánchez-Bayo, F. (2012). Insecticide mode of action in relation to their toxicity to non-target organisms. J. Environment. Analytic. Toxicol. S4: doi:10.4172/2161-0525.S4-002.
Selin-Rani, S., Senthil-Nathan, S., Thanigaivel, A., Vasantha-Srinivasan, P., Edwin, E. S., Ponsankar, A., Lija-Escaline, J., Kalaivani, K., Abdel-Megeed, A., Hunter, W. B. and Alessandro, R. T. (2016). Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere 165: 257-67.
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D. and Dar, O. I. (2019). Worldwide pesticide usage and its impact on ecosystems. SN Applied Sci. 1: 1-16.
Sharma, S. D., Kumar, P., Raj, H. and Bhardwaj, S. K. (2009). Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in the air-layers system. Scientia Horticulturae 123: 117-23.
Takate, B. D. and Gaykar, B. M. (2021). Effect of different concentrations of glycerol on survival of Azotobacter chroococcumlocal strains isolated from wild grasses. Asian J. Appl. Sci. Technol. (AJAST) 5: 16-23.
Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsankar, A., Thanigaivel, A., Chellappandian, M., Edwin, E. S., Selin-Rani, S., Kalaivani, K., Hunter, W. B., Duraipandiyan, V. and Al-Dhabi, N. A. (2018). Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environ. Sci. Pollut. Res. 25: 10371-82.
Vischetti, C., Casucci, C., De Bernardi, A., Monaci, E., Tiano, L., Marcheggiani, F., Ciani, M., Comitini, F., Marini, E., Taskin, E. and Puglisi, E. (2020). Sub-lethal effects of pesticides on the DNA of soil organisms as early ecotoxicological biomarkers. Front. Microbiol. 11: doi.org/10.3389/fmicb.2020.01892.
Wani, S. A., Chand, S. and Ali, T. (2013). Potential use of Azotobacter chroococcum in crop production: an overview. Curr. Agric. Res. J. 1: 35-38.
Beijerinck, M. W. (1901). UeberOligonitrophileMikroben". ZentralblattfürBakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung II (in German) 7: 561–82.
Biruntha, M., Karmegam, N., Archana, J., Selvi, B. K., Paul, J. A. J., Balamuralikrishnan, B., Chang, S. W. and Ravindran, B. (2020). Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresou.Technol. 297: doi: 10.1016/j.biortech. 2019.122398.
Borges, S., Alkassab, A. T., Collison, E., Hinarejos, S., Jones, B., McVey, E., Roessink, I., Steeger, T., Sultan, M. and Wassenberg, J. (2021). Overview of the testing and assessment of effects of microbial pesticides on bees: strengths, challenges and perspectives. Apidologie 52: 1256-77.
De Bernardi, A., Marini, E., Casucci, C., Tiano, L., Marcheggiani, F., Ciani, M., Comitini, F., Taskin, E., Puglisi, E. and Vischetti, C. (2022). Ecotoxicological effects of a synthetic and a natural insecticide on earthworms and soil bacterial community. Environ. Adv. 8: doi.org/10.1016/j.envadv.2022.100225.
Edwin, E., Vasantha-Srinivasan, P., Senthil-Nathan, S., Thanigaivel, A., Ponsankar, A., Selin-Rani, S., Kalaivani, K., Hunter, W. B., Duraipandiyan, V. and Al-Dhabi, N. A. (2016). Effect of andrographolide on phosphatases activity and cytotoxicity against Spodoptera litura. Inverteb. Survival J. 13: 153-63.
Gao, M., Qi, Y., Song, W. and Zhou, Q. (2015). Biomarker analysis of combined oxytetracycline and zinc pollution in earthworms (Eisenia fetida). Chemosphere 139: 229-34.
Khan, H. A. A. (2022). An impact assessment of insecticides application on the non-targeted mosquito Aedes albopictus (Skuse) in Punjab rice fields, Pakistan. Peer J. 10: doi.org/ 10.7717/peerj.13697.
Lankadurai, B. P., Nagato, E. G., Simpson, A. J. and Simpson, M. J. (2015). Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using 1H-NMR based metabolomics. Ecotoxicol.Environ. Safety 120: 48-58.
Medo, J., Makova, J., Medova, J., Lipkova, N., Cinkocki, R., Omelka, R. and Javoreková, S. (2021). Changes in soil microbial community and activity caused by application of dimethachlor and linuron. Sci. Rep. 11: doi.org/10.1038/s41598-021-91755-6.
Monteiro, H. R., Pestana, J. L., Novais, S. C., Soares, A. M. and Lemos, M. F. (2019). Toxicity of the insecticides Spinosad and indoxacarb to the non-target aquatic midge Chironomus riparius. Sci. Total Environ. 666: 1283-91.
Murfadunnisa, S., Vasantha-Srinivasan, P., Ganesan, R., Senthil-Nathan, S., Kim, T. J., Ponsankar, A., Kumar, S. D., Chandramohan, D. and Krutmuang, P. (2019). Larvicidal and enzyme inhibition of essential oil from Sphaeranthusamaranthroides (Burm.) against lepidopteran pest Spodoptera litura (Fab.) and their impact on non-target earthworms. Biocatal. Agric. Biotechnol. 21: doi: 10.1016/j.bcab.2019.101324.
OECD (1984). Earthworm, acute toxicity tests. OECD Guidelines for the Testing of Chemicals, Section, 2. pp. 9.
Ponsankar, A., Vasantha-Srinivasan, P., Senthil-Nathan, S., Thanigaivel, A., Edwin, E. S., Selin-Rani, S., Kalaivani, K., Hunter, W. B., Alessandro, R. T., Abdel-Megeed, A. and Paik, C. H. (2016). Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol.Environ. Safety. 133: 260-70.
Rizvi, A. and Khan, M. S. (2018). Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol. Environ. Safety 157: 9-20.
Romero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas-Tapias, D. and Bonilla, R. (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiologia 49 : 377-83.
Sánchez-Bayo, F. (2012). Insecticide mode of action in relation to their toxicity to non-target organisms. J. Environment. Analytic. Toxicol. S4: doi:10.4172/2161-0525.S4-002.
Selin-Rani, S., Senthil-Nathan, S., Thanigaivel, A., Vasantha-Srinivasan, P., Edwin, E. S., Ponsankar, A., Lija-Escaline, J., Kalaivani, K., Abdel-Megeed, A., Hunter, W. B. and Alessandro, R. T. (2016). Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere 165: 257-67.
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D. and Dar, O. I. (2019). Worldwide pesticide usage and its impact on ecosystems. SN Applied Sci. 1: 1-16.
Sharma, S. D., Kumar, P., Raj, H. and Bhardwaj, S. K. (2009). Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in the air-layers system. Scientia Horticulturae 123: 117-23.
Takate, B. D. and Gaykar, B. M. (2021). Effect of different concentrations of glycerol on survival of Azotobacter chroococcumlocal strains isolated from wild grasses. Asian J. Appl. Sci. Technol. (AJAST) 5: 16-23.
Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsankar, A., Thanigaivel, A., Chellappandian, M., Edwin, E. S., Selin-Rani, S., Kalaivani, K., Hunter, W. B., Duraipandiyan, V. and Al-Dhabi, N. A. (2018). Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environ. Sci. Pollut. Res. 25: 10371-82.
Vischetti, C., Casucci, C., De Bernardi, A., Monaci, E., Tiano, L., Marcheggiani, F., Ciani, M., Comitini, F., Marini, E., Taskin, E. and Puglisi, E. (2020). Sub-lethal effects of pesticides on the DNA of soil organisms as early ecotoxicological biomarkers. Front. Microbiol. 11: doi.org/10.3389/fmicb.2020.01892.
Wani, S. A., Chand, S. and Ali, T. (2013). Potential use of Azotobacter chroococcum in crop production: an overview. Curr. Agric. Res. J. 1: 35-38.