Loading...

Agromorphological analysis of wheat (Triticum aestivum. L) genotypes under combined heat and drought stress conditions 

DOI: 10.31830/2456-8724.2023.FM-126    | Article Id: FM-126 | Page : 72-80
Citation :- Agromorphological analysis of wheat (Triticum aestivum. L) genotypes under combined heat and drought stress conditions. Farm. Manage. 8: 72-80
MUKTI RAM POUDEL, MADHAV PRASAD NEUPANE, HARIKALA PAUDEL, RADHAKRISHNA BHANDARI, SHIVALAL NYAUPANE, ANJALI DHAKAL AND BINOD PANTHI mukti@iaas.edu.np
Address : Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Nepal
Submitted Date : 7-09-2023
Accepted Date : 20-12-2023

Abstract

Wheat production in the world has been limited by climate change and global warming. The gradual rise in atmospheric temperature along with uneven precipitation had become a serious threat to poor production of wheat. Agro-morphological parameter of wheat is greatly influenced by abiotic stresses such as heat waves and moisture stress. To assess the correlation and direct and indirect effect of yield-attributing traits on yield for the selection of high-yielding wheat genotypes under drought at late sown conditions, a field experiment was carried out at the Institute of Agriculture and Animal Science (IAAS), Paklihawa campus, Nepal during 2021/22. The experiment was laid out in alpha lattice design with twenty wheat genotypes under five blocks replicated twice. Results revealed that Bhrikuti (3322.8 kg/ha) was highest-yielding genotype whereas, NL 1179 (1883.4 kg/ha) was lowest-yielding genotype. Correlation and Path coefficient analysis showed plant height (Ph), and spike length (SL) had a significant positive correlation and direct positive effect, respectively with the grain yield (GY).Taller genotypes with longer spike length would produce more under combined heat and drought stress conditions. The cluster analysis classified the genotypes into four clusters where NL 1376 and BL 4919 lies with  Bhrikuti,best commercial check variety, which could further be evaluated to release as a variety.

Keywords

Correlation path analysis trait wheat 

References

ADS (2015). Agriculture Development Strategy (ADS) 2015 to 2035. Ministry of Agricultural Development, Nepal. pp. 20.
Akter, N. and Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 37: doi.org/10.1007/s13593-017-0443-9.
Baye, A., Berihun, B., Bantayehu, M. and Derebe, B. (2020). Genotypic and phenotypic correlation and path coefficient analysis for yield and yield-related traits in advanced bread wheat (Triticum aestivum L.) lines. Cogent Food Agric. 6: doi.org/10.1080/23311932.2020. 1752603.
Bhatt, R., Singh, P., Hossain, A. and Timsina, J. (2021). Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: issues and technological interventions for increasing productivity and sustainability. Paddy Water Environ. 19: 345-65. doi.org/10.1007/s10333-021-00846-7.
. O. and De Steur, H. (2021). Editorial: Sustainable Development Goals (SDGs): Im
Devkota, N. and Phuyal, R. K. (2016). Climatic Impact on Wheat Production in Terai of Nepal. J. Dev. Admin Stud. 23:1–22. doi.org/10.3126/jodas.v23i1-2.15445.
Djanaguiraman, M., Narayanan, S., Erdayani, E. and Prasad, P. V. V. (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 20: 1–12. doi.org/10.1186/s12870-020-02479-0.
FAO (2020). Crop Prospects and Food Situation - Quarterly Global Report No. 1. FAO Rome, Italy.
Hefferon, K. L., Downs, S., Oliu, G pact on Nutrition. Front. Nutr. 8: doi.org/10.3389/ FNUT.2021.676080.
Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M. and Trevaskis, B. (2020). Phenology and related traits for wheat adaptation. Heredity 125: 417-30. doi.org/10.1038/s41437-020-0320-1.
Kamara, M. M., Ibrahim, K. M., Mansour, E., Kheir, A. M. S., Germoush, M. O., Abd El-Moneim, D., Motawei, M. I., Alhusays, A. Y., Farid, M. A. and Rehan, M. (2021). Combining ability and gene action controlling grain yield and its related traits in bread wheat under heat stress and normal conditions. Agronomy 11: doi.org/10.3390/agronomy 11081450.
Khan, A., Ahmad, M., Ahmed, M. and Iftikhar Hussain, M. (2020). Rising atmospheric temperature impact on wheat and thermotolerance strategies. Plants 10: doi.org/10.3390/ plants10010043.
Lamaoui, M., Jemo, M., Datla, R. and Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 6: doi.org/10.3389/FCHEM.2018.00026/ BIBTEX.
Masthigowda, M. H., Sharma, D., Khobra, R., Krishnappa, G., Khan, H., Singh, S. K., Singh, G. and Singh, G. P. (2022). Pollen viability as a potential trait for screening heat-tolerant wheat (Triticum aestivum l.). Funct. Plant Biol. 49: 625-33. doi.org/10.1071/FP21096.
MOALD (2020). Statistical Information in Nepalese Agriculture. Min. Agric. Livestock, Nepal. pp. 290.
Mottaleb, K. A., Rahut, D. B., Kruseman, G. and Erenstein, O. (2018). Changing food consumption of households in developing countries: A Bangladesh case. J. Int. Food  Agribusiness Marketing 30: 156-74. doi.org/10.1080/08974438.2017.1402727.
Pandey, D., Pant, K. R., Bastola, B. R., Giri, R., Bohara, S., Shrestha, S., Hamal, G. B. and Shrestha, J. (2021). Evaluation of bread wheat genotypes under rain-fed conditions in Terai districts of Nepal. J. Agric. Natural Resour. 4: 303-15. doi.org/10.3126/JANR.V4I2.33946.
Paudel, B., Wang, Z., Zhang, Y., Rai, M. K. and Paul, P. K. (2021). Climate change and its impacts on farmer’s livelihood in different physiographic regions of the trans-boundary koshi river basin, central himalayas. Int. J. Environ. Res. Public Health 18: doi.org/10.3390/ ijerph18137142.
Poudel, M. R., Ghimire, S. K., Pandey, M. P., Dhakal, K. H., Bahadur Thapa, D. and Khadka, D. K. (2019). Assessing genetic diversity for drought and heat stress tolerance of Nepalese wheat genotypes by SSR markers. Eurasia J Biosci. 13: 941-48.
Poudel, M. R. and Poudel, H. K. (2016). Genetic variability, heritability and genetic advance of yield attributing traits in winter maize. Int. J. Grad. Res. Rev. 1 :9-12.
Poudel, M., Paudel, H. K. and Yadav, B. P. (2015). Correlation of traits afffecting grain yield in winter maize (Zea mays L.) genotypes. Int. J. Appl. Sci. Biotech. 3: 443-45.
Poudel, P. B., Poudel, M. R. and Puri, R. R. (2021). Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. J. Agric. Food Res. 5: doi.org/10.1016/j.jafr.2021.100179.
Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E. and Galmés, J. (2017). Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front. Plant Sci. 8: doi.org/10.3389/fpls.2017.00490.
Puri, R. R., Tripathi, S., Bhattarai, R., Dangi, S. R. and Pandey, D. (2020). Wheat variety improvement for climate resilience. Asian J. Res. Agric. For. 3: 21-27. doi.org/10.9734 /AJRAF/2020/V6I230101.
Rezaei, E. E., Siebert, S., Manderscheid, R., Müller, J., Mahrookashani, A., Ehrenpfordt, B., Haensch, J., Weigel, H.-J. and Ewert, F. (2018). Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Res. 217: 93-103. doi.org/ 10.1016/j.fcr.2017.12.015.
Sattar, A., Sher, A., Ijaz, M., Ullah, M. S., Ahmad, N. and Umar, U. U. (2020). Individual and combined effect of terminal drought and heat stress on allometric growth, grain yield and quality of bread wheat. Pak. J. Bot. 52: 405-12. doi.org/10.30848/PJB2020-2(5).
Shewry, P. R. and Hey, S. J. (2015). The contribution of wheat to human diet and health. Food Energy Secur. 4: 178-202. doi.org/10.1002/FES3.64.
SQCC (2021). Notified varieties. Seed Quality Control Centre (SQCC), Govt. of Nepal, Lalitpu, Nepal.
Tutlani, A., Kumar, R., Kumari, S. and Chouhan, S. (2023). Correlation and path analysis for yield and its phenological, physiological, morphological and biochemical traits under salinity stress in chickpea (Cicer arietinum L.). Int. J. Bio-Resour. Stress Manag. 14: 878-90. doi.org/10.23910/1.2023.3519.
Ullah, A., Nadeem, F., Nawaz, A., Siddique, K. H. M. and Farooq, M. (2022). Heat stress effects on the reproductive physiology and yield of wheat. J.Agron. Crop Sci. 208: doi.org/10.1111 /jac.12572.
Yang, Z., Zhang, Z., Zhang, T., Fahad, S., Cui, K., Nie, L., Peng, S. and Huang, J. (2017). The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China. Front. Plant Sci. 8: doi.org/10.3389/fpls.2017.01908.
Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V. and Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162: doi.org/10.1111/ppl.12540.
Zhang, M., Gao, Y., Zhang, Y., Fischer, T., Zhao, Z., Zhou, X., Wang, Z. and Wang, E. (2020). The contribution of spike photosynthesis to wheat yield needs to be considered in process-based crop models. Field Crops Res. 257: doi.org/10.1016/j.fcr.2020.107931.
Zhou, H., Andrew B RicheMalcolm J HawkesfordWilliam R WhalleyBrian S AtkinsonCraig J Sturrock and Sacha J Mooney (2021). Determination of wheat spike and spikelet architecture and grain traits using X-ray Computed Tomography imaging. Plant Methods 17: doi.org/10.1186/s13007-021-00726-5.
 

Global Footprints