Loading...

Unveiling the potential of maize-legume intercropping system for agricultural sustainability: A review

 


DOI: 10.31830/2456-8724.2023.FM-124    | Article Id: FM-124 | Page : 1-13
Citation :- Unveiling the potential of maize-legume intercropping system for agricultural sustainability: A review. Farm. Manage. 8: 1-13
UPASANA SAHOO, SAGAR MAITRA, SUMAN DEY, KATHULA KARTHIKA VISHNUPRIYA, MASINA SAIRAM AND LALICHETTI SAGAR sairam.masina@cutm.ac.in
Address : Department of Agronomy and Agroforestry, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi-761 211 (Odisha), India

Abstract

Intercropping offers a promising approach to enhance productivity in a given land area by simultaneously cultivating two or more crops together. Maize, a versatile cereal crop that can be seeded in widespread rows, presents an excellent prospect for growing another crop in between two rows. The coexistence of maize and legumes in an intercropping system brings about numerous benefits across various facets. The accomplishment of the maize-legumes intercropping system relies heavily on proper selection of crop species in mixed stands, considering factors such as their duration, plant stand per unit area, planting geometry and planting time. The advantages of adopting a maize-legume intercropping system are manifold. Firstly, it leads to higher yields and optimal utilization of available resources. Additionally, this system aids in weed, pest and disease management. Legumes play a crucial role by fixing biological nitrogen and transferring it to the associated maize plants, thereby contributing to nitrogen availability. Moreover, intercropping with legumes acts as an insurance against crop failure for smallholders and helps in restriction of soil erosion by covering a larger field area. The article focuses on the multifaceted benefits of the maize-legumes intercropping system, highlighting its potential to enhance agricultural productivity, resource utilization and sustainable farming practices.

Keywords

Agricultural sustainability benefits legumes maize mixed stand

References

Adjimoti, G. O. and Kwadzo, G. T. M. (2018). Crop diversification and household food security status: Evidence from rural Benin. Agric. Food Secur.  7: 82. doi: 10.1186/s40066-018-0233-x.
Arina, I. N., Martini, M. Y., Surdiana, S., Fauzi, R. M. and Zulkefly, S. (2021). Radiation dynamics on crop productivity in different cropping systems. Int. J. Agron. 2021: 1-8. https://doi.org/10.1155/2021/4570616.
Atumo, T. T. (2022). Maize-lablab intercropping date improves yield and suppresses parthenium weed. Cogent Food Agric. 8: 2055270.
Baishya, L. K., Jamir, T., Walling, N. and Rajkhowa, D. J. (2021). Evaluation of maize (Zea mays L.)+legume intercropping system for productivity, profitability, energy budgeting and soil health in hill terraces of eastern Himalayan Region. Legume Res. 44: 1343-47.
Bhagat, G. S., Kushwah, H. S., Panwar, P., Mehra, R., Nagar, M., Sanodiya, R. K., Pandey, J. and Rana, G. K. (2022). Effect of row arrangement on growth and yield intercropped maize with sesame and cowpea. Pharma Innov. 11: 754-57.
Bilalis, D., Papastylianou, P., Konstantas, A., Patsiali, S., Karkanis, A. and Efthimiadou, A. (2010). Weed-suppressive effects of maize-legume intercropping in organic farming. Int. J. Pest Manag. 56: 173-81. doi: 10.1080/09670870903304471.
Bitew, Y., Derebe, B., Worku, A. and Chakelie, G. (2021). Response of maize and common bean to spatial and temporal differentiation in maize-common bean intercropping. PLoS One 16: e0257203. doi: 10.1371/journal.pone.0257203.
Chalka, M. K. and Nepalia, V. (2006). Nutrient uptake appraisal of maize intercropped with legumes and associated weeds under the influence of weed control. Ind. J. Agric. Sci. 40: 86-91.
Chamkhi, I., Cheto, S., Geistlinger, J., Zeroual, Y., Kouisni, L., Bargaz, A. and Cherki Ghoulam, C. (2022). Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Industrial Crops and Prod. 183: 114958. https://doi.org/10.1016/j.indcrop.2022.114958.
Chappa, L. R., Mugwe, J., Maitra, S. and Gitari, H. I. (2022). Current status and prospects of improving sunflower production in Tanzania through intercropping with sunn hemp. Int. J. Biores. Sci. 09: 01-08.
Chi, B. J., Zhang, D. M. and Dong, H. Z. (2021). Control of cotton pests and diseases by intercropping: A review. J. Int. Agric. 20: 3089-3100.
Chimonyo, V. G. P., Govender, L., Nyathi, M., Scheelbeek, P. F. D., Choruma, D. J., Mustafa, M., Massawe, F., Slotow, R., Modi, A. T. and Mabhaudhi, T. (2023) Can cereal-legume intercrop systems contribute to household nutrition in semi-arid environments: A systematic review and meta-analysis. Front. Nutri. 10:1060246. doi: 10.3389/fnut.2023.1060246.
Chimonyo, V. G. P., Snapp, S. S. and Chikowo, R. (2019) Grain legumes increase yield stability in maize-based cropping systems. Crop Sci. 59: 1222-35. doi: 10.2135/cropsci2018.09.0532.
Choudhary, V. K., Dixit, A., Kumar, P. S. and Chauhan, B. S. (2014). Productivity, weed dynamics, nutrient mining and monetary advantage of maize-legume intercropping in the Eastern Himalayan Region of India. Plant Prod. Sci. 17: 342-52.
Connolly, J., Sebastia, M. T., Kirwan, L., Finn, J. A., Llurba, R., Suter, M., Collins, R. P., Porqueddu, C., Helgadóttir, Á., Baadshaug, O. H. and Bélanger, G. (2018). Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continental-scale experiment. J. Appl. Ecol. 55: 852-62. doi: 10.1111/1365-2664.12991.
Cunha, M., Pocas, I. and Mananze, S. E. (2018). Maize leaf area estimation in different growth stages based on allometric descriptors. Afr. J. Agric. Res. 13: 202-09.
Daryanto, S., Fu, B., Zhao, W., Wang, S., Jacinthe, P. A. and Wang, L. (2020). Ecosystem service provision of grain legume and cereal intercropping in Africa. Agric. Syst.  178: 102761. doi: 10.1016/j.agsy.2019.102761.
Dong, N., Tang, M. M., Zhang, W. P., Bao, X. G., Wang, Y., Christie, P. and Li, L. (2018). Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Sci. Rep. 8: 3110. doi: 10.1038/s41598-018-21414-w.
Dwivedi, A., Dev, I., Kumar, V., Yadav, R. S., Yadav, M., Gupta, D., Singh, A. and Tomar, S. S. (2015). Potential role of maize-legume intercropping systems to improve soil fertility status under smallholder farming systems for sustainable agriculture in India. Int. J. Life Sci. Pharma Res. 4: 145-57.
El-Ghobashy, Y., Shams, A. and Lamlom, M. (2018). Maximizing land use efficiency by intercropping cowpea with some maize cultivars under different maize planting geometries. Agri. Sci. 9: 1601-1620. doi: 10.4236/as.2018.912112.
El-Mehy, A. A., Shehata, M. A., Mohamed, A. S., Saleh, S. A. and Suliman, A. A. (2023). Relay intercropping of maize with common dry beans to rationalize nitrogen fertilizer. Front. Sustain. Food Syst. 7: 1052392. doi: 10.3389/fsufs.2023.1052392.
Engbersen, N., Brooker, R. W., Stefan, L., Studer, B. and Schöb, C. (2021). Temporal differentiation of resource capture and biomass accumulation as a driver of yield increase in intercropping. Front. Plant Sci. 12: 668803. doi: 10.3389/fpls.2021.668803.
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K. and Prasanna, B. M.  (2022). Global maize production, consumption and trade: Trends and R & D implications. Food Sec. 14 : 1295-1319.
FAOSTAT (2021). Data, crops and livestock products, online available, https://www.fao.org/faostat/en/#data/QCL (Accessed 16 May 2023).
Fatemi, R., Hoseini, S. M. B., Moghadam, H., Motesharezadeh, B. and Ahmadabadi, Z. (2023) How biofertilizers and intercropping pattern affect yield and nitrogen efficiency indices of maize?. Arab. J. Geosci. 16: 378. https://doi.org/10.1007/s12517-023-11450-w.
Fustec, J., Lesuffleur, F., Mahieu, S. and Cliquet, J. B. (2010). Nitrogen rhizo deposition of legumes–A review. Agron. Sustain. Dev. 30: 57-66. doi: 10.1051/agro/2009003.
Gallo, A. D. S., Fontanétti, A., Guimarães, N. D. F., Morinigo, K. P. G., de Souza, M. D. B. and  da Silva, R. F. (2018). Agronomic characteristics, nutritional status and yield of corn intercropped with dwarf pigeon pea in different spatial arrangements of plants. Revista de Ciências Agrárias. 41: 356-66. doi: 10.19084/RCA17297.
Ghanbari, A., Dahmardeh, M., Siahsar, B.A. and Ramroudi, M. (2010) Effect of maize (Zea mays L.)-cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in an environment. J. Food. Agric. Environ. 8: 102-108. doi: 10.1234/4.2010.1458.
Gheith, E. M. S., El-Badry, O. Z., Lamlom, S. F., Ali, H. M., Siddiqui, M. H., Ghareeb, R. Y., El-Sheikh, M. H., Jebril, J., Abdelsalam, N. R. and Kandil, E. E. (2022). Maize (Zea mays L.) productivity and nitrogen use efficiency in response to nitrogen application levels and time. Front. Plant Sci. 13: 941343. doi: 10.3389/fpls.2022.941343.
Gitari, H. I., Nyawade, S. O., Kamau, S., Karanja, N. N., Gachene, C. K. K., Raza, M., A., Maitra, S. and Elmar Schulte-Geldermann, E. (2020). Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 258: doi.org /10.1016/j.fcr.2020.107957.
Glaze-Corcoran, S., Hashemi, M., Sadeghpour, A., Jahanzad, E., Afshar, R. K., Liu, X. and Herbert, S. J. (2020). Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv. Agron. 162: 199-256. doi: 10.1016/bs.agron.2020.02.004.
Hasan, G. N., Khan, M. M. H., Anik, M. R. H. and Mahmud, M. H. (2023). Intercropping of Soybean within Maize for increasing the crop productivity and cropping intensity in Coastal Region of Bangladesh. Res. Sq. (Preprint). DOI: 10.21203/rs.3.rs-2869634/v1.
Huss, C. P., Holmes, K. D.  and Blubaugh, C. K. (2022). Benefits and risks of intercropping for crop resilience and pest management. J. Econ. Entomol. 115: 1350-62.
Javanmard, A., Machiani, M. A., Lithourgidis, A., Morshedloo, M. R. and Ali Ostadi, A. (2020). Intercropping of maize with legumes: A cleaner strategy for improving the quantity and quality of forage. Cleaner Engg. and Technol. 1: 100003. https://doi.org/10.1016/j.clet.2020.100003.
Jena, J., Maitra, S., Hossain, A., Pramanick, B., Gitari, H. I., Praharaj, S. and Jatav, H. S. (2022). Role of legumes in cropping system for soil ecosystem improvement. Ecosystem Services: Types, Management and Benefits. Nova Science Publishers, Inc. (ed. Jatav, H. S.). pp. 1-21.
Jiao, N. Y., Zhao, C., Ning, T. Y., Hou, L. T., Fu, G. Z., Li, Z. J. and Chen, M. C. (2008). Effects of maize peanut intercropping on economic yield and light response of photosynthesis. Chin. J. Appl. Ecol. 19: 981-85.
Kariag, B. M. (2004). Intercropping maize with cowpeas and beans for soil and water management in Western Kenya. In: Proc. 13th International Soil Conservation Organization Conference, July 4-9, 2004. Brisbane: Conserving Soil and Water for Society. pp. 1-5. doi: 2010.135.145.
Kinama, M. J. and Pierre, H. M. J. (2018). A review on advantage of cereals legumes intercropping system: Case of promiscuous soybeans varieties and maize. Int. J. Agron. Agric. Res. 12: 155-65.
Layek, J., Das, A., Mitran, T., Nath, C., Meena, R. S., Yadav, G. S., Shivakumar, B. G., Kumar, S. and Lal, R. (2018). Cereal+legume intercropping: An option for improving productivity and sustaining soil health. In: Legumes for Soil Health and Sustainable Management, Meena, R. S. et al. (eds.). Singapore: Springer Nature. pp. 347-86. doi: 10.1007/978-981-13-0253-4_11.
Leite da Silva, M. A., Lima de Silva, P. S., Reinaldo de Oliveira, V., Pequeno de Sousa, R. and Jaeveson da Silva (2020). Intercropping maize and cowpea cultivars: II. Dry grain yield. Revista Ciência Agronômica 51: e20186552.
Li, X. F., Wang, C. B., Zhang, W. P., Wang, L. H., Tian, X. L., Yang, S. C., Jiang, W. L., van Ruijven, J. and Li, L. (2018). The role of complementarity and selection effects in P acquisition of intercropping systems. Plant Soil 422: 479-93.
Li, X. F., Wang, Z. G., Bao, X. G., Sun, J. H., Yang, S. C., Wang, P., Wang, C. B., Wu, J. P., Liu, X. R., Tian, X. L. and Wang, Y. (2021). Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 9: 943-50. doi: 10.1038/s41893-021-00767-7.
Li, Y., Wang, L., Zhao, B., Liu, P., Zhang, J., Dong, S. and Shi, D. (2023). Crop productivity, economic advantage, and photosynthetic characteristics in a corn-peanut intercropping system. Agronomy 13: 509. https://doi.org/ 10.3390/agronomy13020509.
Madembo, C., Mhlanga, B. and Thierfelder, C. (2020). Productivity or stability? Exploring maize-legume intercropping strategies for smallholder conservation agriculture farmers in Zimbabwe. Agric. Syst. 185: 102921. https://doi.org/10.1016/j.agsy.2020.102921.
Maitra, S. (2018a). Role of Intercropping System in Agricultural Sustainability. Centurion J. Multidisc. Res. 8: 77-90.
Maitra, S. (2020a) Potential horizon of brown-top millet cultivation in drylands: A review. Crop Res. 55: 57-63.
Maitra, S. (2020b). Intercropping of small millets for agricultural sustainability in dry lands: A review. Crop Res. 55: 162-71.
Maitra, S. (2023). Intercropping System: Theory and Practices. NIPA Genx Electronic Resources & Solutions P. Ltd., New Delhi. pp.137.
Maitra, S. and Gitari, H. I. (2020). Scope for adoption of intercropping system in organic agriculture. Ind. J. Nat. Sci. 11: 28624-31.
Maitra, S. and Ray, D. P. (2019). Enrichment of biodiversity, influence in microbial population dynamics of soil and nutrient utilization in cereal-legume intercropping systems: A review. Int. J. Biores. Sci. 6: 11-19.
Maitra, S. (2018b) Soyabean. In: Forage Crop of the World, Vol. 2. (Hedayetullah, M. and  Zaman, P. (eds.). USA: Apple Academic Press. pp. 101-20.
Maitra, S., Palai, J. B., Manasa, P. and Kumar, D. P. (2019). Potential of intercropping system in sustaining crop productivity. Int. J. Environ. Agric. Biotechnol. 12: 39-45.
Maitra, S., Praharaj, S., Brestic, M., Sahoo, R. K., Sagar, L., Shankar, T., Palai, J. B., Sahoo, U., Sairam, M., Pramanick, B., Nath, S., Venugopalan, V. K., Skalický, M. and Hossain, A. (2023). Rhizobium as biotechnological tools for green solutions: An environment-Friendly approach for sustainable crop production in the modern era of climate change. Curr. Microbiol. 80: 219. https://doi.org/10.1007/s00284-023-03317-w.
Manasa, P., Maitra S. and Reddy M. D. (2018). Effect of summer maize-legume intercropping system on growth, productivity and competitive ability of crops. Int. J. Manage. Technol. Eng. 8: 2871-75.
Manasa, P., Maitra, S. and Barman, S. (2020). Yield attributes, yield, competitive ability and economics of summer maize-legume intercropping system. Int. J. Environ. Agric. Biotechol. 13: 33-38. doi : 10.30954/ 0974-1712.1.2020.16.
Manasa, P., Sairam, M. and Maitra, S. (2021). Influence of maize-legume intercropping system on growth and productivity of crops. Int. J. Biores. Sci. 8: 47-60.
Mandal, M. K., Banerjee, M., Banerjee, H., Alipatra, A. and Malik, G. C. (2014). Productivity of maize (Zea mays) based intercropping system during kharif season under red and lateritic tract of West Bengal. Bioscan. 9: 31-35.
Manoj, K. N., Shekara, B. G. and Shoba, D. (2020). Production potential and forage quality of cereal-legume intercropping systems in Cauvery Command Area of Karnataka. Int. J. Curr. Microbiol. App. Sci. 9: 3175-82.
Massawe, P. I., Mtei, K. M., Munishi, L. K. and Ndakidemi. (2016). Existing practices for soil fertility management through cereals-legumes intercropping systems. World Res. J. Agric. Sci. 3: 80-91.
Mathimaran, N., Jegan, S., Thimmegowda, M. N., Prabavathy, V. R, Yuvaraj, P., Kathiravan, R., Sivakumar, M. N., Manjunatha, B. N., Bhavitha, N. C., Sathish, A., Shashidhar, G. C., Bagyaraj, D. J., Ashok, E. G., Singh, D., Kahmen, A., Boller, T. and Mäder, P. (2020). Intercropping transplanted pigeon pea with finger millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input. Front. Sustain. Food Syst. 4: 88. doi: 10.3389/fsufs.2020.00088.
Mazzafera, P., Favarin, J. L. and Andrade, S. A. L. (2021). Editorial: Intercropping systems in sustainable agriculture. Front. Sustain. Food Syst. 5: 634361. doi: 10.3389/fsufs.2021.634361.
Mekuanint, T. (2020). Competition indices and monetary advantage index of intercropping maize (Zea mays L.) with legumes under supplementary irrigation in Tselemti district, Northern Ethiopia. J. Cereals Oilseeds 11: 30-36.
Mirriam, A., Mugwe, J., Raza, M. A. Seleiman, M. F., Maitra, S. and Gitari, H. I. (2022). Aggrandizing soybean yield, phosphorus use efficiency and economic returns under phosphatic fertilizer application and inoculation with Bradyrhizobium. J. Soil Sci. Plant Nutr. pp. 1-13. https://doi.org/10.1007/s42729-022-00985-8.
Moore, V. M., Schlautman, B., Fei, S. Z., Roberts, L. M., Wolfe, M., Ryan, M. R., Wells, S. and Lorenz, A. J.  (2022). Plant breeding for intercropping in temperate field crop systems: A review. Front. Plant Sci. 13: 843065. doi: 10.3389/fpls.2022.843065.
Mugi-Ngenga, E., Bastiaans, L., Anten, N. P. R., Zingore, S., Baijukya, F. and Giller, K. E. (2023). The role of inter-specific competition for water in maize-legume intercropping systems in northern Tanzania. Agric. Systems 207: 103619.
Mwila, M., Mhlanga, B. and Thierfelder, C. (2021). Intensifying cropping systems through doubled-up legumes in Eastern Zambia. Sci. Rep. 11: 8101. doi: 10.1038/s41598-021-87594-0.
Nandi, S., Maitra, S., Shankar, T., Panda, M. and Sairam, M. (2022). Impact of intercropping of vegetable legumes in summer maize on productivity and competitive ability of crops. Crop Res. 57: 122-27.
Ndayisaba, P. C., Kuyah, S., Midega, C. A. O., Mwangi, P. N. and Khan, Z. R. (2021). Intercropping desmodium and maize improves nitrogen and phosphorus availability and performance of maize in Kenya. Field Crops Res. 263: 108067. https://doi.org/10.1016/j.fcr.2021.108067.
Nduwimana, D., Mochoge, B., Danga, B., Masso, C., Maitra, S. and Gitari, H. I. (2020). Optimizing nitrogen use efficiency and maize yield under varying fertilizer rates in Kenya. Int. J. Biores. Sci. 7: 63-73. doi: 10.30954/2347-9655.02.2020.4.
Ngwira, A. R., Kabambe, V., Simwaka, P., Makoko, K. and Kamoyo, K. (2020). Productivity and profitability of maize-legume cropping systems under conservation agriculture among smallholder farmers in Malawi. Acta Agriculturae Scandinavica, Section B– Soil Plant Sci. 70: 241-51. doi: 10.1080/09064710.2020.1712470.
Olujobi, O. J., Oyun, M. B. and Oke, D. O. (2013). Nitrogen accumulation, growth and yield of maize in pigeon pea/maize intercrop. Glob. J. Biol. Agric. Health Sci. 2: 42-48.
Onduru, D. D. and Du Preez, C. C. (2007). Ecological and agro-economic study of small farms in sub-Saharan Africa. Agron. Sustain. Dev. 27: 197-208. doi: 10.1051/agro:2007003.
Owusu, A. and Sadick, A. (2016). Assessment of soil nutrients under maize intercropping system involving soybean. Int. J. Agric. Food Sci. 1: 33-43.
Panda, S. K., Maitra, S., Panda, P., Shankar, T., Pal, A., Sairam, M. and Praharaj, S. (2021). Productivity and competitive ability of rabi maize and legumes intercropping system. Crop Res. 56: 98-104.
Panda, S. K., Sairam, M., Sahoo, U., Shankar, T. and Maitra, S. (2022). Growth, productivity and economics of maize as influenced by maize-legume intercropping system. Farm. Manage. 7: 61-66.
Patil, Y. G., Mevada, K. D., Vaghela, G. M. and Bedis, M. R. (2022). Economics, equivalent yield and land equivalent ratio for maize with chickpea intercropping system under middle Gujarat condition. Pharma Innov. 11: 1887-90.
Rahimi, I. M., Amanullah, M., Ananthi, T. and Mariappan, G. (2019). Influence of intercropping and weed management practices on weed parameters and yield of maize. Int. J. Curr. Microbiol. Appl. Sci. 8: 2167-72. doi: 10.20546/ijcmas.2017.604.175.
Rapholo, E., Odhiambo, J. J. O., Nelson, W. C. D., Rötter, R. P., Ayisi, K., Koch and Hoffmann, M. P. (2020). Maize-lablab intercropping is promising in supporting the sustainable intensification of smallholder cropping systems under high climate risk in southern Africa. Exp Agric.  56: 104-17. doi: 10.1017/S0014479719000206.
Raza, M. A., Khalid, M. H. B., Zhang, X., Feng, L. Y., Khan, I., Hassan, M. J., Ahmed, M., Ansar, M., Chen, Y. K., Fan, Y. F. and Yang, F. (2019). Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci. Rep. 9: 4947. doi: 10.1038/s41598-019-41364-1.
Reddy, A. S. and Palled, Y. B. (2016). Effect of intercropped fodder cowpea on maize and system productivity in maize + fodder cowpea intercropping systems. J. Agric. Sci. 29: 265-67.
Ro, S., Roeurn, S., Sroy, C. and Prasad, P. V. V. (2023). Agronomic and yield performance of maize-mungbean intercropping with different mungbean seed rates under loamy sand soils of Cambodia. Agronomy 13: 1293. https://doi.org/ 10.3390/agronomy13051293.
Rusinamhodzia, L., Corbeels, M., Nyamangara, J. and Giller, K. E. (2012). Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in Central Mozambique. Field Crops Res. 136: 12-22. doi: 10.1016/j.fcr.2012.07.014.
Sagar, L., Singh, S., Sharma, A., Maitra, S., Attri, M., Sahoo, R. K., Ghasil, B. P., Shankar, T., Gaikwad, D. J., Sairam, M., Sahoo, U., Hossain, A. and Roy, S. (2023). Role of soil microbes against abiotic stresses induced oxidative stresses in plants. In: Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. Springer Nature Singapore. pp. 149-77.
Saharan, K., Schütz, L., Kahmen, A., Wiemken, A., Boller, T. and Mathimaran, N. (2018). Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “Biofertilization” and “Bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Front. Environ. Sci. 6: 46. doi: 10.3389/fenvs.2018.00046.
Sairam, M., Maitra, S., Praharaj, S., Nath, S., Shankar, T., Sahoo, U. and Aftab, T. (2023). An insight into the consequences of emerging contaminants in soil and water and plant responses. In: Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies, Aftab, T. (ed.). Cham, Springer International Publishing. pp. 1-27.
Samui, S., Sagar, L., Shankar, T., Manohar, A., Adhikary, R., Maiyra, S. and Praharaj, S. (2022). Growth and productivity of rabi maize as influenced by foliar application of urea and nano-urea. Crop Res. 57: 136-40.
Schoeny, A., Jumel, S., Rouault, F., Lemarchand, E. and Tivoli, B. (2010). Effect and underlying mechanisms of peacereal intercropping on the epidemic development of ascochyta blight. Eur. J. Plant Pathol. 126: 317-31. doi: 10.1007/ s10658-009-9548-6.
Sennhenn, A., Njarui, D. M., Maass, B. L. and Whitbread, A. M. (2017). Exploring niches for short-season grain legumes in semi-arid Eastern Kenya - coping with the impacts of climate variability. Front. Plant Sci8: 699.
Silberg, T. R., Chimonyo, V. G. P., Richardson, R. B., Snapp, S. S. and Renner, K. (2019). Legume diversification and weed management in African cereal-based systems. Agric. Syst174: 83-94. doi: 10.1016/j.agsy.2019.05.004.
Singh, B. B. and Adjeigbe, H. A. (2002). Improving cowpea cereals-based cropping systems in the dry Savannas of West Africa. In: Challenges and Opportunities for Enhancing Sustainable Cowpea Production, Fatokun, A., Tarawali, S. A., Singh, B. B., Kormawa, P. M. and Tamo, M. (eds.). Ibadan, Nigeria: IITA. pp. 276-84.
Stagnari, F., Maggio, A., Galieni, A. and Pisante, M. (2017). Multiple benefits of legumes for agricultural sustainability: An overview. Chem. Biol. Technol. Agric. 4: 2. doi: 10.1186/s40538-016-0085-1.
Tautges, N. E., Jungers, J. M., DeHaan, L. R., Wyse, D. L. and Sheaffer, C. C. (2018). Maintaining grain yields of the perennial cereal intermediate wheatgrass in monoculture vs. bi-culture with alfalfa in the Upper Midwestern USA. J. Agric. Sci. 156: 758-73. doi: 10.1017/S0021859618000680.
Tripathi, S. C., Venkatesh, K., Meena, R. P., Chander, S. and Singh, G. P. (2021). Sustainable intensification of maize and wheat cropping system through pulse intercropping. Sci Rep. 11: 18805. https://doi.org/10.1038/s41598-021-98179-2.
Tsubo, M., Walker, S. and Ogindo, H. O. (2005). A simulation model of cereal-legume intercropping systems for semi-arid regions. II. Model application. Field Crop Res. 93: 23-33. doi: 10.1016/j.fcr.2004.09.002.
Verret, V., Gardarin, A., Pelzer, E., Médiène, S., Makowski, D. and Valantin-Morison, M. (2017). Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crop Res. 204: 158-68. doi: 10.1016/j.fcr.2017.01.010.
Vesterager, J. M., Nielsen, N. E. and Hogh-Jensen, H. (2008). Effects of cropping history and phosphorus source on yield and nitrogen fixation in sole and intercropped cowpea-maize systems. Nutr. Cycling Agroecosyst. 80: 61-73. doi: 10.1007/ s10705-007-9121-7.
Vieira, R. F., de Paula, T. J. D, Teixeira, H. and Vieira, C. (2009). Intensity of angular leaf spot and anthracnose on pods of common beans cultivated in three cropping systems. Ciénc. Agrotec. 33: 1931-34. doi: 10.1590/ S1413-70542009000700040.
Wang, W., Li, M. L., Gong, D. S., Zhou, R., Khan, A., Zhu, Y., Zhu, H., Abrar, M., Zhu, S. G., Wang, B. Z., Song, C. and Xiong, Y. C. (2022) Water use of intercropped species: Maize-soybean, soybean-wheat and wheat-maize. Agricultural Water Manage. 269: 107690. https://doi.org/10.1016/j.agwat.2022.107690.
Weyers, S., Thom, M., Forcella, F., Eberle, C., Matthees, H., Gesch, R., Ott, M., Feyereisen, G., Strock, J. and Wyse, D. (2019). Reduced potential for nitrogen loss in cover crop-soybean relay systems in a cold climate. J. Environ. Qual. 48: 660-69. doi: 10.2134/jeq2018.09.0350.
Willey, R. W. and Osiru, D. S. O. (1972). Studies on mixtures of maize and beans (Phaseolus vulgaris) with particular reference to plant population. J. Agric. Sci. 79: 517-29.
Wolfe, M. D., Jannink, J. L., Kantar, M. B. and Santantonio, N. (2021). Multi-species genomics-enabled selection for improving agroecosystems across space and time. Front. Plant Sci. 12: 665349. doi: 10.3389/fpls.2021.665349.
Yigezu, Y. A., El-Shater, T., Boughlala, M., Bishaw, Z., Niane, A. A., Maalouf, F., Degu, W. T., Wery, J., Boutfiras, M. and Aw-Hassan, A. (2019). Legume-based rotations have clear economic advantages over cereal monocropping in dry areas. Agron. Sustain. Dev. 39: 58.
Yogesh, S., Halikatti, S. I., Hiremath, S. M., Potdar, M. P., Harlapur, S. I. and Venkatesh, H. (2014). Light use efficiency, productivity and profitability of maize and soybean intercropping as influenced by planting geometry and row proportion. Karnataka J. Agric. Sci. 27: 1-4. doi: 10.23910/IJBSM/2017.8.6.3C0363.
Žalac, H., Herman, G., Ergovi´c, L., Jovi´c, J., Zebec, V., Bubalo, A. and Ivezi´c, V. (2023). Ecological and agronomic benefits of intercropping maize in a walnut orchard–A case study. Agronomy 13: 77. https://doi.org/10.3390/ agronomy13010077.
 
 

Global Footprints