Loading...

Assessing genetic stability of grain quality and vigour in wheat (Triticum aestivum L.) genotypes for climate change resilience


DOI: 10.31830/2456-8724.2025.FM-178    | Article Id: FM-178 | Page : 124-132
Citation :- Assessing genetic stability of grain quality and vigour in wheat (Triticum aestivum L.) genotypes for climate change resilience. Farm. Manage. 10: 124-132
GADDAM TARUN, KRISHAN PAL, KAVITA RANI, R P SAHARAN AND MAYUR H. CHAUDHARI iamtarungaddam@gmail.com
Address : Department of Genetics and Plant Breeding, Guru Kashi University, Talwandi Sabo-151302, Punjab, India
Submitted Date : 16-11-2025
Accepted Date : 24-11-2025

Abstract

Climate change, especially terminal heat stress, poses a major threat to wheat production by affecting both crop establishment and grain quality. Developing climate-resilient cultivars requires identifying genotypes that can maintain stable seed Vigour and grain quality under different thermal conditions. Therefore, it is necessary to evaluate the genetic stability of these key traits in diverse wheat genotypes to identify promising lines for breeding heat-resilient varieties. This study aimed to assess the genetic stability of seed Vigour and grain quality parameters in 43 diverse wheat genotypes. Laboratory experiments were conducted on seeds produced under two contrasting field environments: a temperate condition (E1: 2023-24) and a heat-stress condition (E2: 2024-25). Analysis of variance revealed highly significant (P< 0.01) genotypic differences for all ten evaluated traits, confirming substantial genetic variability. The heat-stress environment generally compromised seed performance, significantly reducing mean germination to 85.09% and seedling dry weight to 0.16 g, while notably increasing mean grain protein content to 12.69%. Among the genotypes, WH 1182 demonstrated superior stability with one of the highest Seed Vigour Index-I values (3548.75) under stress. PBW 750 excelled in biomass accumulation, achieving the highest seedling dry weight (0.49 g) and Seed Vigour Index-II (46.17) in the stress environment. Furthermore, HD 2307 proved genetically stable for grain quality, maintaining the highest protein content (15.90%) under heat stress conditions.

Keywords

Climate resilience genetic stability heat stress protein content seed vigour Triticum aestivum


References

Balla, K., Karsai, I., Bónis, P., Kiss, T., Berki, Z., Horváth, Á., Mayer, M., Bencze, S. and Veisz O. (2019). Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLOS One 14: doi:10.1371/journal.pone.0222639.
Bashir, L., Budhlakoti, N., Pradhan, A. K., Mehmood, A., Haque, M., Jacob, S. R., Bhardwaj, R., Gaikwad, K., Mishra, D. C., Kaur, S., Bhati, P. K., Singh, G. P. and Kumar, S. (2025). Unraveling the genetic basis of heat tolerance and yield in bread wheat: QTN discovery and Its KASP-assisted validation. BMC Plant Biol. 25: doi:10.1186/s12870-025-06285-4.
Chami, J. E., Chami, E. E., Tarnawa, Á., Kassai, K. M., Kende, Z. and Jolánkai, M. (2022). Effect of Fusarium infection on wheat quality parameters. Cereal Res. Commun. 51: 179-87. doi:10.1007/s42976-022-00295-w.
Chengzhi, C., Jidong, C. and Wenfang, C. (2024). Potential yields of two staple cereal crops worldwide under global warming. Farm. Manage. 9: 1-11.
Daloz, A., Rydsaa, J., Hodnebrog, Ø., Sillmann, J., Van Oort, B., Mohr, C., Agrawal, M., Emberson, L., Stordal, F. and Zhang, T. (2021). Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. J. Agric. Food Res. 4: doi:10.1016/j.jafr.2021.100132.
De Lucena Marinho, J., Silva, S. R., De Batista Fonseca, I. C. and Zucareli, C. (2022). Seed physiological quality of wheat cultivars in response to phosphate fertilization. J. Seed Sci. 44doi:10.1590/2317-1545v44246340.
Jyoti, Yadav, R. and Vimal, S. (2021). Standardization of hydro-priming for enhancing seed quality parameter in wheat (Triticum aestivum L.). Pharma Innov. J. 10: 332-35. doi:10.22271/tpi.2021.v10.i4e.5957.
Kumar, H., Chugh, V., Kumar, M., Gupta, V., Prasad, S., Kumar, S., Singh, C. M., Kumar, R., Singh, B. K., Panwar, G. and Kumar, M. (2023). Investigating the impact of terminal heat stress on contrasting wheat cultivars: a comprehensive analysis of phenological, physiological, and biochemical traits. Front. Plant Sci. 14: doi:10.3389/fpls.2023.1189005.
Lamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yashveer, S. and Dalal, M. S. (2023). Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Sci. Rep. 13: doi:10.1038/s41598-023-37634-8.
Lamlom, S. F., Abdelghany, A. M., Farouk, A. S., Alwakel, E. S., Makled, K. M., Bukhari, N. A., Hatamleh, A. A., Ren, H., El-Sorady, G. A. and Shehab, A. A. (2025). Biochemical and yield response of spring wheat to drought stress through gibberellic and abscisic acids. BMC Plant Biol. 25: doi:10.1186/s12870-024-05879-8.
Porte, B. Agrawal, A. P. and Gupta, V. K. (2021). Genetic variability parameters studies under normal and stress conditions of wheat (Triticum aestivum L.). J. Pharmacogn. Phytochem. 10: 598-601.
Poudel, M. R., Poudel, H. K. and Bhandari, R. (2024). Impact of terminal heat stress on performance of Nepalese wheat (Triticum aestivum L.) genotypes. Res. Crop. 25: 1-11.
Raviteja, K., Dubey, N., Avinashe, H. and Bharath, U. (2023). Analysis of genetic variability for morphological and physiological traits in bread wheat (Triticum aestivum L.).  Pharma Innov. J. 12: 737-41.
Redhu, M., Singh, V., Yashveer, S., Sharma, K. and Kumar, S. (2024). Unravelling the genetic basis of terminal heat tolerance and yield related traits in bread wheat (Triticum aestivum L.). Indian J. Genet. Plant Breed. 84: 523–31.
Regmi, D., Poudel, M. R., Bishwas, K. C. and Poudel, P. B. (2021). Yield stability of different elite wheat lines under drought and irrigated environments using AMMI and GGE biplots. Int. J. Appl. Sci. Biotechnol. 9: 98-106.
Saini, A. and Syed, M. (2025). Genetic variability, heritability and genetic advance in analysis of seed quality parameters in wheat (Triticum aestivum L.) germplasm. Asian J.  Res. Crop Sci. 10: 53–59. doi:10.9734/ajrcs/2025/v10i3373.
Tarun, G., Pal, K., Rani, K., Saharan, R. P. and Chaudhari, M, H.  (2025). Integrating morpho-physiological and grain quality indicators to identify climate-responsive wheat genotypes under contrasting agro-ecologies in India. Crop Res. 60: 280-88.
Tiwari, A., Prasad, S., Yadav, S., Kushwaha, V., Yadav, A., Gourav, A., Singh, P. K., Singh, S., Kumar, A. and Singh, R. P. (2023). The terminal heat stress and its effect on yield and yield contributing traits of wheat (Triticum aestivum L.) genotypes. Int. J. Environ. Clim. Change 13: 2331–39.
Tiwari, J. K., Rai, N., Singh, M. K., Reddy, Y. S. and Kumar, R. (2025). Delineating genotype × environment interaction for horticultural traits in tomato using GGE and AMMI biplot analysis. Sci. Rep. 15: doi:10.1038/s41598-025-09021-y.
USDA (2024). World agricultural production. United States Department of Agriculture Foreign Agricultural Service, Washington, DC, USA.
Yeritsyan, S., Yeritsyan, L., Jhangiryan, T., Barseghyan, M., Grigoryan, K. and Gasparyan, G. (2025). Enhancing wheat yield and nutritional quality through organo-mineral fertilizer application. Funct. Food Sci. 5: 146-59. doi.org/10.31989/ffs.v5i5.1604.
 

Global Footprints