Ashok, K., Bhargava, C. N., Asokan, R., Pradeep, C., Kennedy, J. S., Manamohan, M. and Rai, A. (2023a). CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in fall armyworm S. frugiperda (JE Smith) (Lepidoptera: Noctuidae). Int. J. Biol. Macromol. 253: 10.1016/j.ijbiomac.2023.126557.
Ashok, K., Bhargava, C. N., Asokan, R., Pradeep, C., Pradhan, S. K., Kennedy, J. S., Balasubramani, V., Murugan, M., Jayakanthan, M., Geethalakshmi, V. and Manamohan, M. (2023b). CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide (PBAN) gene disrupts mating in the Fall armyworm, S. frugiperda (JE Smith) (Lepidoptera: Noctuidae). 3 Biotech. 13: 370. 10.1007/s13205-023-03798-3.
Awata, D. N., Egbe, A. E. and Ngosong, C. (2024). Effect of integrated nutrient-pest management and planting geometry on the fall armyworm (Spodoptera frugiperda), stem borer (Busseola fusca) and weed infestation of maize (Zea mays L.) in Cameroon. Crop Res. 59: 60-69.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-12. 10.1126/science.1138140.
Champer, J., Buchman, A. and Akbari, O. S. (2017). Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 18: 672-84. doi: 10.1038/nrg.2015.34.
Chikmagalur Nagaraja, B., Karuppannasamy, A., Ramasamy, A., Cholenahalli Narayanappa, A., Chalapathi, P. and Maligeppagol, M. (2023). CRISPR/Cas9‐mediated mutagenesis of sex lethal (Sxl) gene impacts fertility of the fall armyworm, S. frugiperda (JE Smith) (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 114: 1-15. doi:10.1002/ arch.22035.
Doudna, J. A. and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346: doi:10.1126/science.1258096.
Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E. and James, A. A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. United States America 112: E6736–43. doi.org/10.1073/pnas.1521077112.
Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. and Tamò, M. (2016). First report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One 11: doi.org/10.1371/journal.pone.0165632.
Harrison, R. D., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U. and van den Berg, J. (2019). Agro-ecological options for fall armyworm (Spodoptera frugiperda J.E. Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 243: 318–30. doi.org/10.1016/j.jenvman.2019.05.011.
Horikoshi, R. J., Vertuan, H., Morrell, K., Griffith, C., Evans, A., Tan, J., Asiimwe, P., Anderson, H., A José, O. M., Dourado, P. M., Berger, G., Martinelli, S. and Head, G. (2021). A new generation of Bt maize for control of fall armyworm (Spodoptera frugiperda). Pest Manag. Sci. 77: 3727-36. doi.org/10.1002/ps.6334.
Hruska, A. J. (2019). Fall armyworm (Spodoptera frugiperda) management by smallholders. CABI Rev. 2019: 1-11. doi:10.1079/PAVSNNR201914043.
Huang, Y., Zhang, Z. and Li, S. (2019). CRISPR/Cas9-induced mutations in the acetylcholinesterase gene increase pesticide resistance in Spodoptera frugiperda. Pesticide Biochem. Physiol. 159: 26-32. doi.org/10.1016/j.pestbp.2019.01.004.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-21. doi.10.1126/science.1225829.
Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S. M. P. and Tuteja, N. (2016). The CRISPR/Cas genome-editing tool: application in improvement of crops. Front. Plant Sci. 7: doi.org/10.3389/fpls.2016.00506.
Kumar, R. M., Gadratagi, B.-G., Paramesh, V., Kumar, P., Madivalar, Y., Narayanappa, N. and Ullah, F. (2022). Sustainable Management of Invasive fall Armyworm, Spodoptera frugiperda. Agronomy 12: doi.org/10.3390/agronomy12092150.
Lalruatsangi, K. (2021). Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) a major insect pest of maize in India and its management: A review. Farm. Manage. 6: 70-76.
Li, X., Liu, Q., Liu, H., Bi, H., Wang, Y., Chen, X., Wu, N., Xu, J., Zhang, Z., Huang, Y. and Chen, H. (2020). Mutation of doublesex in Hyphantria cunea results in sex‐specific sterility. Pest Manag. Sci. 76: 1673-82. doi.org/10.1002/ps.5687.
Moon, T. T., Maliha, I. J., Khan, A. A. M., Chakraborty, M., Uddin, M. S., Amin, M. R., and Islam, T. (2022). CRISPR-Cas genome editing for insect pest stress management in crop plants. Stresses 2: 493-514. doi.org/10.3390/stresses2040034.
Oleg Alexandrov (2020). Study of the upstream ricin gene sequences in different castor (Ricinus communis) varieties as a preliminary step in CRISPR/Cas9 editing. Res. Crop. 21: 344-48.
Salum, Y. M., Yin, A., Zaheer, U., Liu, Y., Guo, Y. and He, W. (2024). CRISPR/Cas9-based genome editing of fall armyworm (Spodoptera frugiperda): Progress and [rospects. Biomolecules 14: doi.org/10.3390/biom14091074.
Uddin, F., Rudin, C. M. and Sen, T. (2020). CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 10: doi.org/10.3389/fonc.2020.01387.
Wu, K., Shirk, P. D., Taylor, C. E., Furlong, R. B., Shirk, B. D., Pinheiro, D. H. and Siegfried, B. D. (2018). CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in fall armyworm moth (Spodoptera frugiperda). PLoS One 13: doi.org/10.1371/journal. pone.0208647.
Xu, J., Zhang, Z. and Sun, X. (2022). Targeting the double sex gene of Spodoptera frugiperda using CRISPR/Cas9 for genetic sterilization. Pest Manage. Sci. 78: 344-51. doi.org/10.1002/ps.6223.
Zhang, J., Wang, Z. and Lin, C. (2021). Exploring gene functions in Spodoptera frugiperda using CRISPR/Cas9: Applications for pest control. Insect Sci. 28: 552-61. doi.org/10. 1111/1744-7917.12789.
Zhang, Y., Guo, W., Chen, L., Shen, X., Yang, H., Fang, Y., Ouyang, W., Mai, S., Chen, H., Chen, S. and Hao, Q., (2022). CRISPR/Cas9-mediated targeted mutagenesis of GmUGT enhanced soybean resistance against leaf-chewing insects through flavonoids biosynthesis. Front. Plant Sci. 13: doi.org/10.3389/fpls.2022.802716.
Zhou, X., Liu, X. and Wang, S. (2020). CRISPR-mediated sex ratio manipulation in Spodoptera frugiperda for population control. Insect Sci. 27: 654-60. doi.org/10.1111/1744-7917.12842.
Zhu, G. H., Chereddy, S. C., Howell, J. L. and Palli, S. R. (2020). Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. Insect Biochem. Mol. Biol. 122: doi.10.1016/j.ibmb.2020. 103373.
Ashok, K., Bhargava, C. N., Asokan, R., Pradeep, C., Pradhan, S. K., Kennedy, J. S., Balasubramani, V., Murugan, M., Jayakanthan, M., Geethalakshmi, V. and Manamohan, M. (2023b). CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide (PBAN) gene disrupts mating in the Fall armyworm, S. frugiperda (JE Smith) (Lepidoptera: Noctuidae). 3 Biotech. 13: 370. 10.1007/s13205-023-03798-3.
Awata, D. N., Egbe, A. E. and Ngosong, C. (2024). Effect of integrated nutrient-pest management and planting geometry on the fall armyworm (Spodoptera frugiperda), stem borer (Busseola fusca) and weed infestation of maize (Zea mays L.) in Cameroon. Crop Res. 59: 60-69.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-12. 10.1126/science.1138140.
Champer, J., Buchman, A. and Akbari, O. S. (2017). Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 18: 672-84. doi: 10.1038/nrg.2015.34.
Chikmagalur Nagaraja, B., Karuppannasamy, A., Ramasamy, A., Cholenahalli Narayanappa, A., Chalapathi, P. and Maligeppagol, M. (2023). CRISPR/Cas9‐mediated mutagenesis of sex lethal (Sxl) gene impacts fertility of the fall armyworm, S. frugiperda (JE Smith) (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 114: 1-15. doi:10.1002/ arch.22035.
Doudna, J. A. and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346: doi:10.1126/science.1258096.
Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E. and James, A. A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. United States America 112: E6736–43. doi.org/10.1073/pnas.1521077112.
Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. and Tamò, M. (2016). First report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One 11: doi.org/10.1371/journal.pone.0165632.
Harrison, R. D., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U. and van den Berg, J. (2019). Agro-ecological options for fall armyworm (Spodoptera frugiperda J.E. Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 243: 318–30. doi.org/10.1016/j.jenvman.2019.05.011.
Horikoshi, R. J., Vertuan, H., Morrell, K., Griffith, C., Evans, A., Tan, J., Asiimwe, P., Anderson, H., A José, O. M., Dourado, P. M., Berger, G., Martinelli, S. and Head, G. (2021). A new generation of Bt maize for control of fall armyworm (Spodoptera frugiperda). Pest Manag. Sci. 77: 3727-36. doi.org/10.1002/ps.6334.
Hruska, A. J. (2019). Fall armyworm (Spodoptera frugiperda) management by smallholders. CABI Rev. 2019: 1-11. doi:10.1079/PAVSNNR201914043.
Huang, Y., Zhang, Z. and Li, S. (2019). CRISPR/Cas9-induced mutations in the acetylcholinesterase gene increase pesticide resistance in Spodoptera frugiperda. Pesticide Biochem. Physiol. 159: 26-32. doi.org/10.1016/j.pestbp.2019.01.004.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-21. doi.10.1126/science.1225829.
Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S. M. P. and Tuteja, N. (2016). The CRISPR/Cas genome-editing tool: application in improvement of crops. Front. Plant Sci. 7: doi.org/10.3389/fpls.2016.00506.
Kumar, R. M., Gadratagi, B.-G., Paramesh, V., Kumar, P., Madivalar, Y., Narayanappa, N. and Ullah, F. (2022). Sustainable Management of Invasive fall Armyworm, Spodoptera frugiperda. Agronomy 12: doi.org/10.3390/agronomy12092150.
Lalruatsangi, K. (2021). Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) a major insect pest of maize in India and its management: A review. Farm. Manage. 6: 70-76.
Li, X., Liu, Q., Liu, H., Bi, H., Wang, Y., Chen, X., Wu, N., Xu, J., Zhang, Z., Huang, Y. and Chen, H. (2020). Mutation of doublesex in Hyphantria cunea results in sex‐specific sterility. Pest Manag. Sci. 76: 1673-82. doi.org/10.1002/ps.5687.
Moon, T. T., Maliha, I. J., Khan, A. A. M., Chakraborty, M., Uddin, M. S., Amin, M. R., and Islam, T. (2022). CRISPR-Cas genome editing for insect pest stress management in crop plants. Stresses 2: 493-514. doi.org/10.3390/stresses2040034.
Oleg Alexandrov (2020). Study of the upstream ricin gene sequences in different castor (Ricinus communis) varieties as a preliminary step in CRISPR/Cas9 editing. Res. Crop. 21: 344-48.
Salum, Y. M., Yin, A., Zaheer, U., Liu, Y., Guo, Y. and He, W. (2024). CRISPR/Cas9-based genome editing of fall armyworm (Spodoptera frugiperda): Progress and [rospects. Biomolecules 14: doi.org/10.3390/biom14091074.
Uddin, F., Rudin, C. M. and Sen, T. (2020). CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 10: doi.org/10.3389/fonc.2020.01387.
Wu, K., Shirk, P. D., Taylor, C. E., Furlong, R. B., Shirk, B. D., Pinheiro, D. H. and Siegfried, B. D. (2018). CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in fall armyworm moth (Spodoptera frugiperda). PLoS One 13: doi.org/10.1371/journal. pone.0208647.
Xu, J., Zhang, Z. and Sun, X. (2022). Targeting the double sex gene of Spodoptera frugiperda using CRISPR/Cas9 for genetic sterilization. Pest Manage. Sci. 78: 344-51. doi.org/10.1002/ps.6223.
Zhang, J., Wang, Z. and Lin, C. (2021). Exploring gene functions in Spodoptera frugiperda using CRISPR/Cas9: Applications for pest control. Insect Sci. 28: 552-61. doi.org/10. 1111/1744-7917.12789.
Zhang, Y., Guo, W., Chen, L., Shen, X., Yang, H., Fang, Y., Ouyang, W., Mai, S., Chen, H., Chen, S. and Hao, Q., (2022). CRISPR/Cas9-mediated targeted mutagenesis of GmUGT enhanced soybean resistance against leaf-chewing insects through flavonoids biosynthesis. Front. Plant Sci. 13: doi.org/10.3389/fpls.2022.802716.
Zhou, X., Liu, X. and Wang, S. (2020). CRISPR-mediated sex ratio manipulation in Spodoptera frugiperda for population control. Insect Sci. 27: 654-60. doi.org/10.1111/1744-7917.12842.
Zhu, G. H., Chereddy, S. C., Howell, J. L. and Palli, S. R. (2020). Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. Insect Biochem. Mol. Biol. 122: doi.10.1016/j.ibmb.2020. 103373.